A Theory To Explain Tropical Cyclone Kinetic Energy Spectra

Boris Galperin¹, Alexander K. Nickerson¹, <u>Gregory P King²</u>, and Jun A. Zhang³

USF COLLEGE OF MARINE SCIENCE College of Marine Science, University of South Florida, 140 7th Ave S, St. Petersburg, Florida, USA 33701
Independent Scholar (ATTIC), 5 Kilncroft, Selkirk TD7 5AQ, Scottish Borders, UK
School of Marine Sciences, Nanjing University of Information Science and Technology (NUIST), Nanjing, China

1. Objective

To develop a theory of TC turbulence that successfully explains observations of **1D KE energy spectral** slopes and amplitudes.

2. Flight Data

Dataset: Consisted of 3000 reconnaissance aircraft missions into 320 tropical storms and tropical cyclones in the North Atlantic and Eastern

3. Previous Work

- Pacific Oceans during the years 1977-2022. Also, NOAA Best Track (NBT) and Hurricane Research Division (HRD) storm parameters and track information.
- *Samples*: Only flights along *radial legs* were used. The flight legs spanned the full TC. From these, *sublegs* were extracted that sampled either the TC inner core (IR) or TC outer region (OR).
- *Storm classification*: This was carried out by classifying the maximum 60-second sustained wind speed of each flight leg and grouping them according to the Saffir-Simpson scale.
- *Wind field regions*: Inner region IR: $0 < r < 2R_{mw}$ and outer region OR: $r > 2R_{mw}$. The IR includes the *eyewall* (green) and the *near-core* (pink). See Fig 1.

4. Tropical Cyclones — Previously observed spectra

Vonich & Hakim (2018) Spectral composites of three datasets. Radial flight legs span TC. Taken from Ref [2]. • flight legs grouped into classes defined by TC category. • spectra ensemble averaged for each

5. TC Model

- Barotropic framework • Rapidly spinning vortex (\hat{f}) in a planetary flow $(f) \dots$
 - → \hat{f} : *cyclostrophic* Coriolis parameter
 - $ightarrow \tilde{f}$: effective Coriolis parameter

 $\tilde{f} = f + j$

Principle of Least Action (Landau & Lifshitz: *Mechanics*)

class.

Wavenumber (rads m^{-1})

If $f \neq \text{constant}$, there is a *cyclostrophic* β -effect — which generates Vortex Rossby Waves (VRWs) in the TC eyewall. $(\hat{\beta} \approx \hat{f}/R_{mw})$

VRWs interact with turbulence and produce *anisotropic* 1D KE spectra ...

 $E_L(k_1) = C_{KL} \Pi_{\epsilon}^{2/3} k_1^{-5/3} + C_{fL} \tilde{f}^2 k_1^{-3}$ $E_T(k_1) = C_{KT} \Pi_{\epsilon}^{2/3} k_1^{-5/3} + C_{fT} \tilde{f}^2 k_1^{-3} + C_z \hat{\beta}^2 k^{-5}$

6. Comparison with Observations

Structure of the TC wind field

includes eyewall and near-core (pink)

Eyewall azimuthal velocity profile resembles an eastward zonal jet found on Saturn and Jupiter!

6. Conclusion:

Observed TC spectra shows that cyclostrophic turbulence evolves from purely peristrophic to mixed peristrophic-zonostrophic turbulence. See Ref [3] for more results and conclusions.

References

Sukoriansky, S., & Galperin, B. (2016). QNSE theory of turbulence anisotropization and onset of the inverse energy cascade by solid body rotation. *J. Fluid Mech.*, 805, 384–421.
Vonich, P. T., & Hakim, G. J. (2018). Hurricane kinetic energy spectra from in situ aircraft observations. *J. Atmos. Sci.*, 75, 2523-2532.
Galperin, Nickerson, King and Zhang (2025).