
Boris Galperin1, Alexander K. Nickerson1, Gregory P King2, and Jun A. Zhang3

1. College of Marine Science, University of South Florida, 140 7th Ave S, St. Petersburg, Florida, USA 33701 

2. Independent Scholar (ATTIC), 5 Kilncroft, Selkirk TD7 5AQ, Scottish Borders, UK 
3. School of Marine Sciences, Nanjing University of Information Science and Technology (NUIST), Nanjing, China

1. Objective 

A Theory To Explain Tropical Cyclone Kinetic Energy Spectra
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2. Flight Data 

• Dataset: Consisted of 3000 reconnaissance aircraft missions into 320 
tropical storms and tropical cyclones in the North Atlantic and Eastern 
Pacific Oceans during the years 1977-2022.  Also, NOAA Best Track 
(NBT) and Hurricane Research Division (HRD) storm parameters and 
track information.  

• Samples: Only flights along radial legs were used. The flight legs 
spanned the full TC. From these, sublegs were extracted that sampled 
either the TC inner core (IR) or TC outer region (OR). 

• Storm classification: This was carried out by classifying the 
maximum 60-second sustained wind speed of each flight leg and 
grouping them according to the Saffir-Simpson scale.  

• Wind field regions: Inner region  and outer region 
. The IR includes the eyewall (green) and the near-core 

(pink). See Fig 1. 

IR: 0 < r < 2Rmw
OR: r > 2Rmw
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To develop a theory of TC turbulence that 
successfully explains observations of 1D KE 
energy spectral slopes and amplitudes.

EL(k)

EL(k)
ET(k)

Observed atmospheric KE spectra (midlatitudes) 

Simulations of 2D turbulence   
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Quasi-Normal Scale Elimination (QNSE) theory 
See [1] 
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4. Tropical Cyclones — Previously observed spectra	
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Spectral composites of three datasets. 
Radial flight legs span TC.  
Taken from Ref [2].

Vonich & Hakim (2018) Results … 
As TC intensity 
increases … 
• amplitude increases 
• slopes steepen 
• resemble Nastrom 

& Gage spectra

ET(k1)• flight legs grouped 
into classes defined 
by TC category. 

• spectra ensemble 
averaged for each 
class.

5. TC Model  
• Barotropic framework

• Rapidly spinning vortex  in a planetary flow  …


➡   :  cyclostrophic Coriolis parameter

➡   :  effective Coriolis parameter
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(Landau & Lifshitz: Mechanics)
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If  in the TC core, theory predicts …f̃ = constant
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If  , there is a cyclostrophic -effect  — which generates 
Vortex Rossby Waves (VRWs) in the TC eyewall.  

VRWs interact with turbulence and produce anisotropic 1D KE 
spectra …

f̃ ≠ constant β
( ̂β ≈ ̂f /Rmw)
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Flight legs span the TC

Theory
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Amplitudes  
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TC category

Fig shows that  
both  and  
are needed to 
account for 
spectral 
anisotropy 
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The diamonds mark the boundary between peristrophic and zonostrophic 
subranges (see Ref [3]).

Inner Region Spectra 
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Normalization   
collapses all spectra in 
the Kolmogorov 
subrange.  

The subrange shrinks 
with increasing TC 
intensity.

Theory Theory

Observed TC spectra shows that cyclostrophic turbulence evolves from purely peristrophic to mixed peristrophic-zonostrophic 
turbulence. See Ref [3] for more results and conclusions.
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Structure of the TC wind field
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Eyewall azimuthal velocity profile resembles 
an eastward zonal jet found on Saturn and Jupiter!


