Data denial experiments of scatterometer winds in the JMA's global data assimilation system **IOKA Yusuke¹**

1. Introduction

- In Japan, heavy rainfall events related to fronts or typhoons often cause water-related disasters during warm season. Realistic representation of wind convergence zone and distribution of water vapor field on the lower-level of troposphere is one of the important factors for accurate heavy rain forecast.
- Ocean Wind Vectors(OWVs) retrieved from microwave scatterometer onboard polar-orbiting satellites provide global, spatially continuous data on wind speed and direction twice a day without being affected by cloud cover.
- As input data for numerical weather prediction (NWP) systems, scatterometer-derived OWVs provide directly improvement of the accuracy of near-surface wind analyses. Indirectly, these improvements can enhance the representation of lower-level temperature fields, moisture distributions, and surface pressure fields, which contribute to better precipitation forecasts.
- JMA. The direct effect of scatterometer winds to the data assimilation system has not been examined for a long time, particularly with using the present NWP systems.
- In this study, we conducted denial experiments of OWVs to examine the impact of the assimilating the data on the present global NWP system.

2. Specification of the experiment Control experiment (CNTL) Table 1. Experiment and verification period Winter Summer assimilation system of JMA [1] From 10 Jun. 2023 to 11 From 10 Dec. 2022 to 1 Analysis Aug. 2023 Feb. 2023 Data denial experiment (TEST) From 20 Jun. 2023 to 11 From 20 Dec. 2022 to 11 Forecast Feb. 2023 Aug. 2023 From 1 Jul. 2023 to 31 From 1 Jan. 2023 to 30 Statistical verification Jul 2023 Jan. 2023

9					da						-+/-	4-4-			
<u> </u>		K	esu		ae	nia	exp	Jerir		6	nus	lall	SLIC		
	Score-Differences Confidence [Denial-Winter] scores compared to [GOBS-CNTL]								Score-Differences Confidence [Denial-Summe						
			NH(90N-20N)	TR(20N-20S)	SH(20S-90S)	JP(110-150,20-50)	NWP(100-180,0-60)				NH(90N-20N)	TR(20N-20S)	SH(205-905)	IP(110-150.20	
	Z500	RMSE	▲ • ▲ ▲ • ▼ • • • ▼ ♦		A A O O V V O O O O O	▲ • • ▼ ♦ • ■ ♦ • ▲ •	• * • * • * * • * • * •	Summer	Z500	RMSE			V • • • • A A A A		
		ACC		• • • • • • • • • • •	• • • • • • • • • • •		• • • • • • • • • • • •			ACC	A A V A & A -		TTO O O AAAA		
		ME	***		V • • V • V • • 		• • • • • • • • •			ME					
Winter	PSEA	RMSE	▲ • • • ▼ • • ▲ • ▼		A • • • V • A • A A •		* * * *		PSEA	RMSE				VA • • • • A	
		ACC	• • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • •	• v • v k v • k	****			ACC					
		ME	• • • • • • • • • • •			<u> </u>	▲ • ▼ • • ▼ • • ▼ ◆			ME	**	X • • • • • • • • •			
	Т850	RMSE	• • • • • • • • • • •				* * • • * • • * * • *		T850	RMSE				• v • • v • • •	
		ACC	• • • • • • • • • •		▲ • ▼ • ▼ • • • • ▼		V V · · · · · · · · ·			ACC					
		ME	V V = A \$ V A A V \$ \$							ME	· · · · · · · · · · · · · · · · · · ·		V • • A A • A A • • V	V V 0 0 V 0 0 V	
	Ws250	RMSE	V V A • A A • A A V 	V V V		• • 7 7 6 7 • 7 7 • •	V • •		Ws250	RMSE		.		V • • V • A	
		ACC	V V A • A A A A V V	V V V	• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	V 0 0			ACC					
		ME	V A A A A A A		♦ • ▲ - - • • - - - • • •	A A 4 • • A 7 • • • •	• • • • • • • • • • •			ME	• • • • • v • • • •	TTTTT			
	Ws850	RMSE	V V • • • • • V 			V V A • V V V A • •	• 4 • 7 7 7 7 4 4 •		Ws850	RMSE	V • V • • A • • • • A				
		ACC	▼▼▲ • • • • • ■▲ •			V V A • • V • • • •	• • • v v v v v v			ACC					
		ME		~~~	• • • • • • • • • • • • • • • • • • •	• ▲ ▲ • • ▲ • • • ▲ •	** **********			ME				• • • • • • • • •	
	RH700	RMSE	• • • • A • V A			• • • • • • • • •	• • • • • • • • • • •		RH700	RMSE			• •	• v • v • v • • •	
		ACC	• • • • A • V • A	• • • • • • • • • • • • • •		• • • • A V V V V	• • • • • • • •			ACC					
		ME			v • v v k • v \$ • • v	V V A A • • • A A • •	• • ▲ ▲ • • • ▼ ▲ ▲ •			ME					
	better	(>99%)	🔶 better (>95%) 🔺 b	oetter (>68%) 🔹 neut	ral 🤍 worse (>68%) 🔶 worse (>95		better	(>99%)	🔶 better (>95%) 🔺	better (>68%) 🔹 neut	ral 🛛 worse (:	>68%) 🔶 worse		

Fig. 1 shows the significance level of the differences in forecast scores of the global forecast model. Forecast skill was assessed through verification against analysis. In this experiment, results of forecast score become generally neutral. Result of Northern Hemisphere on summer experiment shows some degradation of lower layer elements. Number of assimilated other lower-tropospheric data such as Atmospheric Motion Vectors (AMVs) were increased (>10%, not shown). Since the verification in this study was conducted against the experiment's own analysis, the CNTL experiment that is the amount of correction applied to the first guess was smaller may have been at an advantage.

Fig. 2 shows the differences in typhoon track forecast errors during the summer experiment. This validation is compared with the reference to JMA best-track data and validated region is Northwestern Pacific. Although some deterioration in track forecasts was observed in the later forecast stages, the early stages showed mostly neutral results.

③ 気象庁 Japan Meteorological Agency

1: Office of Numerical Prediction Modeling, Japan Meteorological Agency, y_ioka@met.kishou.go.jp

4.

In recent years, the assessment of the impact of assimilating scatterometer winds has largely focused on comparing conditions before and after the introduction of new satellite data in

Same as Jun. 2023 operational assimilation datasets are used. As scatterometer winds, Metop-B,C/ASCAT winds are assimilated. Same as of Jun. 2023 global

Metop-B,C/ASCAT winds are not assimilated. Except for scatterometer, same as Jun. 2023 operational assimilation datasets are used

Experiment and verification period are shown on the table 1.

Fig. 3 shows that, in the denial experiment(TEST), degradation of consistency between the analysis (and first guess) and AMV observations are shown for both wind speed and wind direction, particularly in the lower layer.

A similar tendency was observed for other wind-related observations (e.g., radiosondes and aircraft observation; not shown).

In addition, degradation in consistency with observations was also evident in environmental parameters such as relative humidity, temperature, and sea-level pressure, especially in the middle to lower layers of the atmosphere.

Fig. 3. Change in normalized standard deviation(STDDEV) of the analysis and first-guess departure.

 $(STDDEV_{BASE} - STDDEV_{CNTL})/STDDEV_{CNTL})$ for AMV wind observations(Red: Summer, Green: Winter) Error bars represent 95% confidence intervals, and dots are statistically significant.

ASCAT[•]: 5062 ASCAT[•]: 2523

ALL: 6752 ALL: 6732

Fig.8. Day Natural RGB imagery of Himawari-9 satellite at 00UTC on 25th Jul. 2023. Cyan color region indicate ice cloud and snow or sea ice covered area. White color region indicate water cloud.

Summary

In this study, a denial experiment of scatterometer OWVs was conducted using the JMA's global NWP system, as a preliminary investigation to evaluate the impact on analysis and forecasts. While the forecast impact was generally neutral in this period. Analysis fields, particularly the lower-level winds and environmental parameters, showed degraded statistical consistency with observations. In the summer case, changes were seen in the near-surface zonal wind along the boundary of a high-pressure system over the northern Pacific, and it was shown that the representation of the low-level inversion layer was enhanced.

Reference

[1] Japan Meteorological Agency, 2024: Outline of the operational numerical weather prediction at the Japan Meteorological Agency. https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2024-nwp/index.htm [2] Meteorological Satellite Center of JMA, 2024: Utilization of Meteorological Satellite Data in Cloud Analysis. Meteorological Satellite Center Technical Note, SP [3]Wood,R.and C.S.Bretherton, 2006 : On the relationship between stratiform low cloud cover and lower tropospheric stability. J.Climate, 19, 6425-6432.

Changes in the mean analysis field

Fig. 4. Change in the mean analysis field of 925 hPa wind(U, V).

Fig. 5. Change in the mean analysis field of 925 hPa wind(U) around Japan area on the summer experiment

Fig. 6. Data coverage of assimilated scatterometer data in the CNTL experiment at 00UTC on 25th Jul.2023

NOUSE[•]: 1690 NOUSE[•]: 4209

Fig. 4 shows the spatial distribution of change in the mean analysis field of 925 hPa winds. Resulting from the assimilation of scatterometer OWVs are found over the low- and high-latitude regions of the Pacific Ocean, as well as in equatorial regions of the Indian and Atlantic Oceans. Relatively large changes are seen over the area extending from east of Japan to the Aleutian Islands.

Fig. 5 is a zoomed-in view of the mean analyzed U-component wind field from the summer experiment shown in Fig. 4, focusing on the area from east of Japan to the Aleutian islands. As indicated by the red circles, the U-component is strengthened east of Japan in the denial experiment.

In the CNTL experiment, scatterometer ocean surface wind data were assimilated in this area (Fig. 6). This implies that the assimilation of scatterometer ocean surface winds tends to adjust the forecast model zonal winds east of Japan toward weaker values.

To further analyze the area with changes in zonal winds identified in Fig. 5, Fig. 7 presents the surface wind field (wind speed and U-component) from the analysis field at 00 UTC on July 25, 2023.

The region shaded in yellow, where winds are strengthened in the denial experiment, is located near the boundary of a high-pressure system over the North Pacific.

This result shows that the scatterometer ocean surface winds weakened the surface wind field around the high-pressure system over the North Pacific.

According to satellite-based observations over the ocean southwest of the Aleutian Islands, located near the boundary of a high-pressure system shown in Fig. 7, cloud analysis techniques using satellite imagery [2] indicate the presence of widespread stratocumulus clouds and stratus clouds (Fig. 8). The occurrence of these stratocumulus clouds suggests the presence of a low-level temperature inversion layer [3].

On the right side of Fig. 9, which presents a cross-section along the red line shown in Fig. 7 indicates that the region where the lower-level winds were weakened in the CNTL experiment across the area where the inversion layer extends. Whether the changes in the analysis fields in this experiment actually led to improved consistency with the real atmospheric state will be investigated in future work.

Fig. 7. Change in the analysis field of surface wind(WS, U) around Japan area at 00UTC on 25th Jul. 2023 ellow shade shows enhancement of wind on the denial experiment Black contour shows sea surface pressure of TEST experiment

		-
Denial-Summer GOBS-CNTL	contour interval: 4 Denial-Summer GOBS-CNIL	IL.
(shade) CNTL(anl) FCSTP T 1000hPa-100hPa	IEST(ant)-CNIL(ant) FCSTP U 1000hPa-100hPa (contour) TEST, IEST(ant) FCSTP PSEA 1000hPu6 1	96
, lon) = (50,28deg,150,12deg)-(40,10deg,180,05deg), (bottom,top) = (1000hPa,100hPa)	cross-section (lat, lon) = (50, 28deg, 150, 12deg)-(40, 10deg, 180, 05deg), (bottom, top) = (1000hPa, 100hPa)	
305		0
- 303	200 hPa	
200	7.	0
- 297	6.	0
295	300 hPa	
- 293	5.	0
- 291	4	0
- 289	400 hPa	
- 287	3.	0
- 285		0
- 283	500 hPa	1
- 281	H 1.	0
279		0
	600 hPa	
273	- 2.	0
- 271		0
- 269	700 hPa	
- 267	-4.	0
265		
263	800 hPa	1
- 261	-6.	0
- 259	-7	
257	900 hPa	×
255	-8.	0
FT-01 V-111, 0000/07/05 00 107		
FI=0n Valid: 2023/07/25 09JSI	1000 PPa	т
	Turit: 2023/01/25 00010 FI-00 Valid: 2023/01/25 033	41
action field of tomorroture (loft mid) one	difference of L	
section held of temperature(left, mid) and		

component wind(TEST-CNTL) at 00UTC on 25th Jul. 2023(right).