Correction of NWP ocean surface wind biases with machine learning and scatterometer data

E. Makarova (BEC, ICM–CSIC) <u>makarova@icm.csic.es</u>,
<u>M. Portabella</u> (BEC, ICM–CSIC), A. Stoffelen (KNMI),
V. Vilaplana (UPC), M. García (NOW), M. Sotillo (NOW)

International Ocean Vector Winds Science Team Meeting Darmstadt, Germany

8 May 2025

Reported persistent ERA5 U10S biases:

Excessive mean model westerlies in the middle latitudes Insufficient mean model poleward flow between 30° and 60° Wind direction biased clockwise in NH and anticlockwise in SH

Current approach to reduce the biases is based on the accumulation of the differences between scatterometers and model stress-equivalent winds over a certain time window.

Dataset	World Ocean Circulation ERA*	Copernicus Global Ocean Hourly Reprocessed Sea Surface Wind and Stress from Scatterometer and Model	Copernicus Global Ocean Hourly Sea Surface Wind and Stress from Scatterometer and Model
Time span	2010 - 2020	1 Jun 1994 to 22 Dec 2024	27 Apr 2023 to now
Spatial Resolution	0.125 degrees	0.125 and 0.25 degrees	0.125 degrees
Temporal resolution	1 hour	1 hour	1 hour
Time window	15 and 3 days	20 and 90 days	20 days
Corrected dataset	ERA5	ERA5	ECMWF operational forecasts
Scatterometers	Metop-A, Metop-B, Metop-C ASCAT, OceanSat-2 OSCAT, ScatSat-1 OSCAT	Metop-A, Metop-B, Metop-C ASCAT, QuikSCAT SeaWinds, ERS-1 and ERS-2 SCAT	Metop-B and Metop-C ASCAT
DOI	https://doi.org/10.20350/digitalC SIC/15436	https://doi.org/10.48670/moi-0018 5	https://doi.org/10.48670/moi-0030 5

Current work on ERA* derived from WOC project:

- New version of code solves the issue of gradient artifacts due to the interpolation
- Latest code will be used to reprocess the 2010 2020
- Generate outputs for 2021 2024

Limitations:

- Only corrects local biases persistent over several days
- Very sensitive to scatterometer sampling, especially over shorter time windows
- Doesn't directly show NWP error dependence on both atmospheric and ocean state conditions
- Has limitations in operational use: computationally expensive and need to shift temporal window (which in turn degrades performance)

ERA* ML approach

Regression ML model to predict NWP stress-equivalent wind (U10S) biases

ML Models

Gradient-boosted decision trees (GBDT) – fast training

XGBoost

Fully-connected feed forward neural networks

O PyTorch

Spatial convolutions:

ML model	Gradient-boosted decision trees (GBDT)	Fully-connected feed forward neural networks	Convolutional NN
Implementation	XGBoost	PyTorch	U-Net (PyTorch)
Convolutions	No	No	Spatial
Data inputs grid	L2	L2	L3
Down-sampling	10%	10%	No
Regularization	Several parameters	Dropout	Weight decay
Advantages	Very fast training compared to NNs, built-in feature importance	Less overfit compared to XGBoost	Best VRMS metrics vs ASCAT
Disadvantages	More prone to overfitting	Slow training, manual calculation of spatial derivatives	Drop of spatial variance

Datasets

Inputs:

ERA5 reanalysis:

- U10S components, wind speed and direction
- Mean sea level pressure
- Air temperature
- Specific humidity
- SST, SST gradients

Currents: Global Total (COPERNICUS-GLOBCURRENT), Ekman and Geostrophic currents at the Surface and 15m

Daily mean surface velocities components (uo, vo)

Derivatives: ERA5 wind curl, divergence

Targets:

Differences between ASCAT-A and ERA5 U10S: OSI SAF ASCAT-A 12.5 km U10S data

Periods:

- 02/01/2020 01/05/2020 (split into train/validation/test)
- 01/02/2019 30/04/2019 (test)

Validation: 2019

01/02 - 30/04 2019

KGBoost FNN 256-128-64-32 UNet

Error var. reduction vs ERA5/HSCAT-B, %

■ XGBoost ■ FNN 256-128-64-32 ■ UNet ■ ERA* N15

VRMS ERA5	ASCAT-A	HSCAT-B
Global	2.082	1.647
Tropics	2.056	1.602
Extra-Tropics	2.047	1.622
High Lats	2.2	1.794

VRMS vs ASCAT-A & HSCAT-B

U-Net Validation ASCAT-C/HSCAT-B/HSCAT-C

Spectral power density

v-component February 2019 Collocations vs HSCAT-B

FNN & XGBoost:

 Lower variance at 500-km scale in tropics compared to ERA5

U-Net:

 Important drop of spatial variance at scales < 1000 km

Loss function?

Conclusions

- Preliminary ML models show that it is possible to predict ERA5 NWP biases using other NWP variables as input.
- With FNN models 6.3% error variance reduction achieved globally and 10.6% in the extra-tropics (vs HSCAT-B, February April 2019).
- Reduction is larger when validated against ASCAT (up to 9.7% globally and 13% in extra-tropics for FNNs) than against HSCAT. Diurnal effects? QC effects?
- Issues with the loss of spatial variance, especially for CNNs.
- Uses:
 - Improvement of the reanalysis datasets for the periods with no scatterometer observations
 - Improvement of the operational forecasts if trained with IFS

Future Work

Barcelona Expert Center

- Train FNN models on 5 years of data (OSI_VSA24_01 ERAS_ML project).
- Try other loss functions for CNN approach to reduce loss of spatial variance.
- Explore architectures based on GANs and transformers.
- Analyse diurnal & QC effects by ASCAT-HSCATs collocation analysis
- CERAINE Copernicus Marine service evolution project:
 - Improve the North-East Atlantic wave and physics model solutions (IBI-MFC short-term forecast services) by correcting their operational forcing data with ANNs
- Improved near-surface temperature representation (ESA COMET)
- Improved SMOS-derived salinity retrievals (EO4TIP)

Contacts:

Eugenia Makarova makarova@icm.csic.es

Marcos Portabella portabella@icm.csic.es

International Ocean Vector Winds Science Team Meeting Darmstadt, Germany

5 May 2025

