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• Newport Hydrographic Line station NH-10 (10 nautical miles 
from the coast) has been the site of six programs (labeled above 
the NH-10 Data Availability panel) from 1997-present

• Hourly temperature, salinity, and velocity combined time series 
at NH-10, detailed in Risien et. al (2023), available at Zenodo

• Time series from NOAA ¼° Daily Optimal Interpolation Sea 
Surface Temperature (OISST) offshore regions and grid cell 
nearest NH-10 also examined to compare with shelf response

Marine Heat 
Wave Period #1

Marine Heat 
Wave Period #2
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• Sustained anomalous warming (b) at all locations 
during 1st MHW period

• Highest temperature anomaly of 4°C is observed 
in late 2016 at bottom

• Strong seasonal cycle (c) and dominance of 
summer upwelling in temperature at the NH-10 
surface and near surface and OISST shelf

• Strong seasonal cycle in along-shelf velocity (d) 
at surface and near surface with equatorward 
flow in March-October associated with coastal 
upwelling jet 

• Near bottom, seasonal velocity pattern is similar 
with weaker equatorward flow reaching only 10 
cm/s and earlier reversal to poleward flow 
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4. Results: Marine heat wave events are 
increasing over time off central Oregon

5. Results: Seasonal Timing and 
vertical structure of warming 
differs in two MHW periods

8. Results: Variation in spring transition 
date relates to timing and severity of MHW  

• We use the Hobday et al. (2018) MHW categories:
• Stronger MHWs when maximum temperature exceeds 

multiples of 90th percentile difference from mean
• Moderate > 1X, Strong > 2X, Severe > 3X, Extreme > 4X
• MHWs at NH-10 typically fall within moderate or strong 

categories at all depths
• 0-2 m depth
• 1st MHW period – sustained warm anomalies except in 

summer due to interruption by upwelling-favorable winds 
• 2nd MHW period – warm anomalies in first summer and 

early fall due to its start in summer 2019
• 6-8 m depth
• 1st MHW period – reaches extreme category during early 

2015 when it is warmer than surface water, possibly due to 
winter cooling of fresh coastal river waters at surface
• 2nd MHW period – very similar to surface

• 70-80 m depth
• 1st MHW period – MHW observed at bottom when warm 

anomalies in surface and near surface are largest 
• 2nd MHW period – no bottom MHW associated with warm 

anomalies at surface and near surface in summer/fall 2019
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• Strong upwelling 
winds in spring 2016 
and 2020 preceded 
by less winter 
warming (panels 5,6)

• Spring transition 
earlier than mean 
but within standard 
deviation

Based on 
methods 
similar to 
Pierce et al. 
(2006)

• Stronger and more persistent upwelling-favorable 
winds (c) in 2015 than 2014, but MHW reappears at 
surface in early July 2015 after short wind reversal

• Equatorward surface currents (b) reach over 70 cm/s 
at start of upwelling season in April 2015 then 
weaken in mid-May

• Warm anomalies (a) persist for remainder of 2015 
and surface currents fluctuate with wind stress

• Strong upwelling winds 
in spring 2015 interrupt 
warm winter (panel 6)

• MHW not observed at 
NH10 until summer 2019

• Spring transition close to 
mean 

• Cumulative upwelling 
increases rapidly in 2015

• MHW first observed at 
NH10 in spring 2014

• Spring transition 27 days 
after mean and outside  
standard deviation

• Only 5 years (in green) 
since record began in 
1967 have spring 
transitions later than 2014

OSU -
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3. Results: Shelf Climatologies and Anomalies
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7. Results: Stratification contains 
warm anomalies to the surface

• January: shelf water is well-mixed from surface to 40 m depth in 2015 and 
throughout water column in 2016; warming extends to bottom (panel 5)

• April: shelf in transition between well-mixed winter and stratified summer; 
surface layer deep enough for consistent warming in surface and near 
surface

• June: shallow surface layer and strong stratification in seasonal pycnocline 
between 10-30 m depth; surface experiences more warming than near 
surface

Surface

Bottom

Application of Hobday et al. (2016) MHW criteria
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• Warm anomalies (d) dominate bottom temperature, but 
evidence of cooling with downwelling relaxation in winter 
2014-15 and strong upwelling events in spring

• Similar to surface, along-shelf velocity at bottom (e) 
typically aligns with 8-day wind stress with anomalous 
poleward and equatorward flow during strong winds (g)

• Across-shelf velocity at bottom (f) opposes direction of 8-
day wind stress as expected from Ekman forcing
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1. Introduction
• Most Northeast Pacific marine heatwave (MHW) studies focus 

on surface expression due to availability of satellite SST data
• Here we characterize surface and subsurface temperature 

anomalies with focus on MHW events of 2014-16 and 2019-20
• Long time series allow us to address gaps in knowledge 

regarding the subsurface response on the shelf during recent 
temperature anomalies and create a climatology that 
approaches climate community standard of 30 years

NH-10 Data Availability

2. Data: The NH-10 Mooring

NHL 
shipboard 
data

OOI glider 
data

OISST data

Equatorward

Upwelling-favorable

W8day defined by 
Austin and Barth 
(2002)

Mean spring 
transition 
(April 12th)

Mean spring 
transition 
± 1 standard 
deviation 
(20 days)

6. Results: Upwelling winds 
interrupt MHWs
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Manuscript: Cervantes, B.T., Fewings, 
M.R., and Risien, C.M. Subsurface 
temperature anomalies off central 
Oregon during 2014–2021, under review 
at JGR Oceans.

NSF Ocean Observatories Initiative CTD data (CE02SHBP-LJ01D-06-CTDBPN106; CE02SHSM-
RID27-03-CTDBPC000; CE02SHSM-SBD11-06-METBKA000) and velocity data (CE02SHBP-
LJ01D-05-ADCPTB104; CE02SHSM-RID26-01-ADCPTA000; CE02SHSM-SBD11-04-VELPTA000) 
available at 
https://thredds.dataexplorer.oceanobservatories.org/thredds/catalog/ooigoldcopy/public/cat
alog.html. GLOBEC-LTOP NH-10 data available at https://www.bcodmo.org/dataset/2458 and
https://www.bco-dmo.org/dataset/2459.

Duration increases at 
all depths 
Rate of increase 
highest at surface

Cumulative intensity 
increases at all depths 
Rate of increase 
highest at surface

Max temperature 
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• Signature of warming events at NH-10 is very different during the two 
MHW periods, with fewer events, shorter durations, and smaller 
intensities during 2019-20 compared to 2014-16. 

• Most events in 2019-20, including all surface events, occurred during 
the upwelling season, a dramatic contrast to the 2014-16 period 
(upwelling season indicated by gray shading).


