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Abstract

This study aims to expand and improve the capabilities of Advanced Scatterometer (ASCAT) by adding rain detection and advancing 

wind retrieval using machine learning. We apply semantic segmentation to ASCAT measurements to detect rain over the oceans, 

enhancing capabilities to monitor global precipitation. We use U-Net, a popular neural network, and train it on measurements from the 

Tropical Rainfall Measuring Mission (TRMM) collocated with ASCAT backscatter and European Centre for Medium-Range Weather 

Forecasts (ECMWF) near-surface wind measurements. We apply the same semantic segmentation techniques and neural network 

architecture on wind retrieval to create a machine learning model that acts as an inverse Geophysical Model Function (GMF). However, 

we expand the model's output classes to many different wind speeds and directions and train the model on ASCAT data collocated with 

ECMWF near-surface wind vector data. We successfully demonstrate the ability of the ASCAT satellite to detect rainfall in Earth's 

oceans, with the ability to retrieve wind vectors without an explicit GMF or Maximum Likelihood Estimation (MLE).

Collocation
The interference rain has on ASCAT backscatter makes it difficult 

to retrieve wind vectors, but potentially give us the ability to detect 

rain using ASCAT backscatter. We explore this possibility with 

supervised machine learning where ASCAT measurements are 

our inputs and TRMM PR rain measurements are our target 

values. Using machine learning we can adjust weights in the 

model to use ASCAT as the input and rain as the output.

We collocate the ASCAT measurements with TRMM PR  

measurements allowing us to see where rain is present relative to 

ASCAT. 
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Figure 1 
The intersecting beams of TRMM and ASCAT satellites. The intersection of 

the two paths is where we spatially and temporally collocate the data used as 

our input and target values.

Figure 2 
Image of the U-net architecture. The blue boxes are multi-channel feature 

maps with the number of channels shown above each box and the dimension 

of each map shown lower left of the box. White boxes are encoded feature 

maps copied to the decoder. The arrows represent different operations with a 

legend in the lower right of the image.  Source adapted from [1].

Convolutional Neural Network (CNN)
A CNN uses convolution operations to predict target values from 

input values. The training process adjusts weights in the kernel 

filters until target values in the training set are predicted from input 

values [2]. Additionally, a validation dataset is used to prevent the 

model from overfitting on the training dataset. An extension of the 

architecture is U-Net.

U-Net
U-Net is an encoder-decoder architecture [3] designed for 

semantic segmentation (the classification of each individual pixel 

in an image). The architecture features three main sections:

• Encoder: captures low-level features from input images by 

progressively reducing the spatial dimensions.

• Decoder: captures fine-grain feature maps by upsampling 

encoded features.

• Skip Connections: concatenates the encoder and decoder 

features maps.

This architecture takes into account higher order and lower order 

features when determining its output, see Figure 2. 

Wind Retrieval with U-Net
While training the U-Net to detect rain, we discovered that the 

same algorithm could be applied to wind retrieval. Traditionally, 

ocean surface winds are retrieved through pointwise wind retrieval 

with a GMF to generate intersections between multiple 

measurements, an MLE to generate ambiguities, and an 

ambiguity selection algorithm to select the most likely ambiguity 

[4]. Our model does all these steps in one go. We train a U-Net to 

generate the most likely wind direction and another U-Net to 

predict the most likely wind speed using ASCAT measurements. 

We combine the results from the two U-Nets to form wind vector 

prediction.

Figure 3
Example predictions of the model compared to TRMM. Light green is rain 

was predicted and detected, light blue is no rain predicted nor detected, red 

is rain was predicted but not detected, and orange is rain was not predicted, 

but was detected. 

Figure 4
Confusion Matrix from U-Net model with MC Dropout predictions on the y-

axis and ECMWF predictions on the x-axis. The red line is the ideal model. 

The colors indicate the number predictions for a given wind speed, specified 

by the colorbar on the right.

Results
We successfully train a U-Net model to detect rain (see Figure 3), 

using ASCAT and TRMM collocations, with an overall Intersection 

over Union (IoU) Score of 0.285. The equation for IoU is below 

where P is prediction and T is target.

IoU =
|𝑃 ∩  𝑇|

|𝑃 ∪  𝑇|
This result demonstrates that we can successfully detect rain 

using ASCAT measurements. Our research in wind retrieval with 

U-Net shows that neural networks can retrieve wind. We trained 

two U-Net models whose performances are shown in Figures 4 

and 5. Overall we have an RMSE of 0.98 m/s for Wind Speed. 

The direction model has weaker performance with an average 

error of 52⁰. However, as can be seen in Figure 5, the errors are 

distributed at 0⁰ and 180⁰. This is a common error for pointwise 

wind retrieval method, suggesting that the neural network predicts 

wind direction through a similar methodology as the pointwise 

wind retrieval generates ambiguities.

Figure 5
Kernel Density Estimate (KDE) and histogram plot of prediction errors 

relative to ECMWF predictions. There are several maxima at -180⁰, 0⁰, and 

180⁰ which correspond to wind ambiguities.
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