Science Goals Related to Spray Modification of Hurricane Winds and Turbulent Fluxes

Amelia Bryan and Mark Bourassa
EOAS & COAPS, Florida State University

<table>
<thead>
<tr>
<th>Goals</th>
<th>Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Goals:</td>
<td>To improve the roughness lengths for momentum, potential temperature, and specific humidity:</td>
</tr>
<tr>
<td>○ Better estimates of the transfer coefficients in tropical cyclones</td>
<td>● Hard constraint: prescribed value</td>
</tr>
</tbody>
</table>
| ○ Better estimates of the impact of spray and evaporation on the apparent surface temperature and humidity | ● Soft constraint:
 \[
 \text{weight} \cdot (\ln(\epsilon_{\text{calculated}}) - \ln(\epsilon_{\text{theoretical}}))
 \]
| ○ Ratios of enthalpy flux to drag | When compared to other terms in the function |
| ● Improved roughness lengths | ● Weight small: roughness length within a few orders of magnitude of the theoretical value |
| ● Increase size of dataset | ● Weight large: roughness lengths are way too big or too small |

10m winds are estimated from the solution at 10m above the displacement height.

- Points: individual dropsonde profiles
- Rolling bins used to make lines
 - Solid blue= Median (on bin center)
 - Dashed blue= uncertainty
- Shading:
 - dark= quartiles (25-75 percentiles)
 - Light= 5-95 percentiles \((N \geq 30)\)
 - Blue= Higher confidence \((N < 30)\)
 - Gray= Lower confidence

10m winds are estimated from the solution at 10m above the displacement height.

\[
C_D(10m) = \left(\frac{\text{v}_{10m}}{\text{u}_{10m}}\right)^2
\]

References

Contact

Amelia Bryan: abryan@coaps.fsu.edu
Mark Bourassa: bourassa@coaps.fsu.edu

Please feel free to reach out with any questions!

Acknowledgments

This research is funded in part by NASA Physical Oceanography via the Jet Propulsion Laboratory (Contract #1419699) and funded in part by the Global Ocean Monitoring and Observing Program (Fund #180007298), National Oceanic and Atmospheric Administration, U.S. Department of Commerce through the Northern Gulf of Mexico Institute (NGI grant number 21-NGI4-04).