

Past Work

Dropsonde selection was done visually and required that the profiles of temperature, moisture, and wind speed all had a log-linear layer.



10m winds are estimated from the solution at 10m above the displacement height.



References

Wallace, D. E., Bourassa, M. A., Holbach, H. M., 2023: Log-Profile Analysis of the Near-Surface Layer and Air-Sea Turbulent Fluxes in Hurricanes Using Dropsondes. M.S. theis, Dept. of Earth, Ocean, and Atmospheric Sciences, Florida State University (in review).

# Science Goals Related to Spray Modification of Hurricane Winds and Turbulent Fluxes Amelia Bryan and Mark Bourassa EOAS & COAPS, Florida State University

Goals

### • Science Goals:

- Increase size of dataset







Contact

Amelia Bryan: abryan@coaps.fsu.edu Mark Bourassa: bourassa@coaps.fsu.edu *Please feel free to reach out with any questions!* 

To improve the roughness lengths for momentum, potential temperature, and specific humidity:

• Hard constraint: prescribed value • Soft constraint:

When compared to other terms in the function • Weight small: roughness length within a few orders of magnitude of the theoretical value • Weight large:roughness lengths are way too big or too small

To increase the size of the dataset: • Automate the selection process

Compare our work using dropsondes in the log-layer to similar work being done by Greg Foltz using Saildrones at the surface in order to understand what might be going on in the spray layer between them C<sub>D</sub> Binned Based on Wind Speed



- noise
- mean

This research is funded in part by NASA Physical Oceanography via the Jet Propulsion Laboratory (Contract #1419699) and funded in part by the Global Ocean Monitoring and Observing Program (Fund #100007298), National Oceanic and Atmospheric Administration, U.S. Department of Commerce through the Northern Gulf of Mexico Institute (NGI grant number 21-NGI4-04).





Plans

weight •  $(ln(z_{o-solution}) - (ln(z_{o-theory}))$ 

### Expectations

• Improving the roughness lengths will reduce noise in the roughness lengths and also have a smaller reductions in the drag coefficient's

• Increasing the size of the dataset will make a better estimate of the

• Address questions with spray and enthalpy fluxes

## Acknowledgments