A New Climate Data Record of the Ocean Surface Winds and Stress: Focus on the Dynamically-Significant Derivatives and Investigating their Role in Convective Development

1. Creation of a consistent long-term Earth Science Data Record (ESDR) that includes observations from QuikSCAT, ASCAT-A/B and ScatSat.

2. Development of the dynamically-significant derived products: the surface wind stress; the curl and divergence of the wind and the stress.

3. Development of scatterometer-only user-friendly gridded products (Level 3 products)

GOALS of our MEaSUREs Project

Why focus on the derivatives?

Ocean surface winds - a major driver of

- ocean circulation
- curl of surface stress
- air-sea interactions
- fluxes and mixing
- atmospheric convection
- surface wind convergence

Understanding is critical for improving ocean and atmospheric forecasting

Derivative Products: what?

- Will be produced from:
 - Harmonized wind retrievals using QuikSCAT, ASCAT-A/B and ScatSat observations
 - Space-time collocated ERA-5 winds

- Will contain the following derivatives:
 - Curl and divergence of the EN wind;
 - Curl and divergence of the stress;

- Will be produced by:
 - two methods for computing derivatives
 - at several effective resolutions, for each

Relationship of SURFACE FORCING and CONVECTIVE DEVELOPMENT

A novel technique that allows the detection of deep and shallow convection based on analyses of surface convergence and vertically-integrated condensed mass.

Each regime represents a known precipitation mode:

- mostly clear air
- developing convection
- stratiform
- mature convection

Schematic of the interactions between mature convection, the cold pool beneath, and the convergence it generates on its leading edge that forces the development of new convection.

(Simulation of Hurricane Rita)