Satellite-derived Ocean-Surface Stress and Ekman Circulation in the Arctic ## Chao LIU, Lisan YU Woods Hole Oceanographic Institution - The persistent decline in Arctic sea ice extent has altered ocean-surface stress, $\tau_{\rm o}$, across both ice-free and ice-covered regions, impacting ocean circulation and freshwater distribution primarily through Ekman transport. - Mapping τ_0 and associated Ekman circulation using available satellite observations is important for understanding Arctic dynamics and climate change. - $au_{\rm o}$ is the sum of the air-water stress ($au_{\rm aw}$) for the open water and the ice-water stress ($au_{\rm iw}$) for the water covered by ice: $au_{\rm o} = \alpha au_{\rm iw} + (1-\alpha) au_{\rm aw}$, where α is sea ice extent. - τ_{aw} and τ_{iw} are both parameterized using a quadratic drag law: $$au_{aw} = ho_a \, C_{D,aw} \, |\mathbf{U}_{10}| \mathbf{U}_{10}$$ and $au_{iw} = ho_w \, C_{D,iw} \, |\mathbf{U}_{ice} - \mathbf{U}_E - \mathbf{U}_g| \, (\mathbf{U}_{ice} - \mathbf{U}_E - \mathbf{U}_g)$ where C_D are drag coefficients, \mathbf{U}_{10} is the wind velocity vector at 10m, \mathbf{U}_{ice} is sea ice motion, \mathbf{U}_E is Ekman velocity, and \mathbf{U}_g is geostrophic velocity. • Based on above equations, τ_0 can be estimated using the following four datasets: | Variable | Product | Resolution | |-------------------------|---|---------------------------| | U 10 | OAFlux2 Satellite Ocean-Surface Winds | Daily 0.25°, 1988-present | | U _{ice} | Polar Pathfinder Sea Ice motion V4 | Daily 25 km, 1978-present | | U g | CLS multi-mission Ocean Altimeter SSH | 3-Day 25 km, 2011-2021 | | α | Goddard/NSIDC Sea Ice Concentrations V2 | Daily 25 km, 1978-present |