IMPROVING SFMR RETRIEVALS IN MID-LATITUDE WINTER STORMS

Stephen Frasier¹, Jezabel Vilardell Sanchez¹, Joseph Sapp^{2,3}, Zorana Jelenak^{3,4}, Paul Chang³

> ¹University of Massachusetts Amherst, MA 01003 ²Global Science & Technology Greenbelt, MD 20770 ³NOAA/NESDIS/STAR College Park, MD 20740 ⁴UCAR, Boulder, CO

Support for UMass from NSF AGS-2016809

Outline

SFMR and winter operations Revisions to Radiative Transfer Model Melting Layer model Surface Layer model Results

Summary

Stepped Frequency Microwave Radiometer (SFMR)

Airborne, nadir-looking, C-band

Measures Tb at 6 freqs. 4-7 GHz

Compare Tb with Radiative Transfer Model given wind speed and rain rate

Find wind speed and rain rate that minimize diff between measured and modeled Tb.

Extensively developed for Tropical Cyclones

Winter time behavior

Tendency to retrieve excessive rain rates

Example from 2/28/2021

Tendency for wind speeds to be high

Radiative Transfer Model (TCs)

University of Massachusetts Amherst Sapp, J.W., S.O. Alsweiss, Z. Jelenak, P.S. Chang, J. Carswell, 2019. "Stepped Frequency Microwave Radiometer wind-speed retrieval improvements," *Remote Sens.*, **11**(3), p. 214.

Radiative Transfer Model (winter)

Radiative Transfer Model (TC vs Winter)

Data Set

	Year	Flight Days	Location
SFMR data provided by NOAA/NESDIS	2012	8	St. John's (NL)
82 research flights over 10 years	2013	10	St. John's (NL)
Tbs and aircraft environmental/navigation	2014	10	Halifax (NS)
	2015	23	Halifax (NS)
Tb, f, Ta, H, pitch, roll, salinity, SST	2016	15	Ireland
100 < Tb < 200 -5 < pitch/roll < +5 1800 m < H < 2200 m RFI: 5.31 GHz channel omitted	2017	6	Ireland
	2018	5	Ireland
	2021	5	Anchorage, AK (USA)

Melting Layer Model

What about excess attenuation and self emission from an intervening melting layer?

 $\boldsymbol{\tau}_{ml} = \boldsymbol{e}^{-c_{ml} \cdot \kappa_r \cdot \sec \theta}$

Kr = specific attenuation by rain

 $Cml \sim 10 * ml$ thickness

ml thickness ~ 300-400 m

C-band modeled specific attenuation at 26-Jun-2007 08:17:34 UTC

Von Lerber, et al. 2015. "Modeling Radar Attenuation by a Low Melting Layer with Optimized Model Parameters at C-band," IEEE TGRS, 53(2), Figure 9

ML model

2/3/2012 (St. Johns)

Substantially reduces RR

Slightly reduces WS

Shortcomings of ML model

- + ML has the effect of "amplifying" the rain input to RTM
- + The self-emission of the ML results in more spreading of the Tb, which is desired
- +/- The effect of the ML is parameterized by the rain rate.
- It requires that rain be always present
- Sometimes there is no rain, esp when T < 0 everywhere.

Surface Layer Model

Hypothesized presence of a "surface layer" of lofted mixed-phased particles

Excess emission from this surface-based layer would behave similarly to ML

Excess emission parameterized by the wind speed.

Icing conditions for surface vessels/platforms

Results

Measured minus Modeled Tb vs reference wind and frequency (solid lines)

Number of independent observations (dashed line)

Reference Wind

We have surface truth at specific point in space and time via dropwindsondes

Use lowest freq channel in rain free conditions to obtain WS and compare with sondes

Use relationship to obtain 'equivalent' sonde wind for all locations, call it Uref.

Dropsondes

We have surface truth at specific point in space and time via dropwindsondes

Use lowest freq channel in rain free conditions to obtain WS and compare with sondes

Use relationship to obtain 'equivalent' sonde wind for all locations, call it Uref.

Results

Excess emission over modeled result vs reference wind And frequency

Results

Impact of incorporating excess emission on wind retrievals

Comparison with sondes shows reduced bias at higher winds

RR revisited

SL model also reduces RR while preserving observable structure

Rain rates appear more consistent with observed radar reflectivity

Summary

Application of the usual SFMR RTM in winter conditions underestimates the observed Tb

More spreading of channels than predicted

Considered two sources of excess emission: melting layer (rr), surface layer (ws)

Estimated the excess emission assuming it is due to a surface-based layer

Resulting RTM reduces the bias in SFMR winds compared to sondes for high winds

Rain rates also appear to be more consistent.

QUESTIONS & ANSWERS

WL150 vs Interpolation

