Observations and modeling of wind-wave-current interactions at meso and submesoscales

Bia Villas Bôas

Team: Gwendal Marechal (Mines), Matt Mazloff and Rui Sun (Scripps) Collaborators: Nick Pizzo, Luc Lenain, Han Wang, Jacques Vanneste, and Bill Young.

Waves, currents, and winds are coupled

- Waves impact momentum, energy, heat, • and gas fluxes
- Enhance mixing (Langmuir turbulence) ullet
- Affects pathways of pollutants, plastics, ulletice, and algae.
- Impact the retrieval and interpretation of remote sensing measurements

Waves, currents, and winds are coupled

The SKRIPS model framework (Sun et al., 2021)

See also Sun et al. (2019, 2021, 2022)

Waves, currents, and winds are coupled

The SKRIPS model framework (Sun et al., 2021)

See also Sun et al. (2019, 2021, 2022)

Models suggest that the spatial variability of Hs at scales between 10-100km is driven by currents

See also: Romero et al (2017, 2020), Ardhuin et al. (2017), Villas Bôas et al. 2020, Marechal and Ardhuin 2021

See also: Romero et al (2017, 2020), Ardhuin et al. (2017), Villas Bôas et al. 2020, Marechal and Ardhuin 2021

The spatial variability of H_s is highly dependent on the nature of the flow

Villas Bôas et al, (2020); Villas Bôas and Young (2020)

- Rotational currents lead to stronger gradients than divergent currents.
- Highly anisotropic H_{s} (streaks aligned with the wave propagation)
- Shallower KE spectral slopes imply finer structures in H_s

Theory supports modeling results:

Wang et al. [JFM 2023], Part B finishing revisions [available on arXiv], Part C on the works

MINES.EDU

More vorticity

More divergence

What we know

- Modeling and theory suggest a scale dependence between currents and significant wave height
- Vorticity/Refraction is the main mechanism driving the spatial variability of Hs at scales shorter than storm-scale
 - Not necessarily the case for higher moments See for example Rascle et al. (2016) and Lenain and Pizzo (2021).

What we know

- Modeling and theory suggest a scale dependence between currents and significant wave height
- Vorticity/Refraction is the main mechanism driving the spatial variability of Hs at scales shorter than storm-scale
 - Not necessarily the case for higher moments See for example Rascle. et al. (2016) and Lenain and Pizzo (2021).

What we don't know

- Can we observe this relationship? Does it break down at any particular scale?
 - Present evidence is limited to ~30 km (Quilfen and Chapron, 2019)
 - We lack collocated observations of waves and currents

What is the impact of current-induced refraction on higher moments (e.g., Stokes Drift) and air-sea fluxes?

Observing sea state gradients from S-MODE and SWOT

MASS airborne lidar observations

Scripps Air-sea lab Modular Aerial Sensing System (MASS)

From Luc Lenain (SIO)

MASS observations of H_s under two different wave conditions

S-MODE pilot (Nov 2021)

• Wind sea, high frequency and directional spreading, relatively low Hs (~ 3 m).

MASS observations of H_s under two different wave conditions

S-MODE pilot (Nov 2021)

 Wind sea, high frequency and directional spreading, relatively low Hs (~ 3 m).

S-MODE pilot (Oct 2021)

 Swell, low frequency and directional spreading, high Hs (~ 8 m) ⁽

Wave groups lead to spatial variability of H_{c}

modulation of H_s

COLORADOSCHOOLOFMINES. EARTH • ENERGY • ENVIRONMENT

MINES_EDU

There is no (spatial) scale separation between group and current

There is no (spatial) scale separation between group and current modulation of H_{s} Expectation 😃

COLORADOSCHOOLOFMINES. EARTH • ENERGY • ENVIRONMENT

There is no (spatial) scale separation between group and current modulation of H_s

COLORADOSCHOOLOFMINES. EARTH • ENERGY • ENVIRONMENT

Reality 😁

Observing waves from SWOT

Observing waves from SWOT

• SWOT maps the ocean surface topography via two parallel 50 km-wide swaths every 21 days

Opportunities and challenges from SWOT observations

SWOT can see long swells and groups!

What is the role of group modulation on air-sea fluxes?

Opportunities and challenges from SWOT observations

SWOT can see long swells and groups!

What is the role of group modulation on air-sea fluxes?

And map the 2D significant wave height (thanks to Alejandro Bohe's algorithm)

Comparison between MASS and SWOT observations

Waves and winds from SWOT in the Southern Ocean

Wind-Wave-Current coupling in the Gulf Stream

Remember the anisotropy in the models?

MINES.EDU

40°N 20°N 0° 20°S 40°S 120°W 60°W 0° 60°E

• **SWOT** observations reveal highly anisotropic H_s that model and U2H

agrees with predictions from

 $E_{slope}(k, \theta)$

0.2

0.4

0.0

Ν

NW

Z Latitude

V The wave field looks like this

X Not like this

- How do current-induced sea state gradients feedback into the coupled Earth system?
- Do these relatively small scale variability have a net effect on large (climate) scales?
- Should we be thinking about this when developing wave-aware parametrizations for coupled models?
 - We focused on H_s here, but some of this can be extrapolated to Stokes drift, mss, etc.
- Should we be thinking about this when developing GMF's and/or using wave model output to contrains satellite obs?

WINES OCEANOGRAPHY WWW. WINES OCEANOGRAPHY

Mines Oceanography has 1 PhD and 2 postdoc positions open in air-sea interaction villasboas@mines.edu

- How do current-induced sea state gradients feedback into the coupled Earth system?
- Do these relatively small scale variability have a net effect on large (climate) scales?
- Should we be thinking about this when developing wave-aware parametrizations for coupled models?
 - We focused on H_s here, but some of this can be extrapolated to Stokes drift, mss, etc.
- Should we be thinking about this when developing GMF's and/or using wave model output to contrains satellite obs?

Backup

COLORADOSCHOOLOFMINES. EARTH • ENERGY • ENVIRONMENT

Marechal et al., in prep

Numerical modeling suggests that:

- The spatial variability of Stokes drift results from a combined response to wind forcing and amplitude/ frequency modulation due to currents
 - What is the relative importance of refraction and bunching (concertina)?

See also Romero et al., 2020

The U2H map: theory corroborates numerical results

• Maps the surface current ("U") to H_s ("H") anomalies

Assumptions:

- 1. Scale separation between waves and currents.
- 2. No sources/sinks of action.
- 3. Weak current $\rightarrow \varepsilon = U/c \ll 1$

$$\partial_t A + \nabla_k \omega \cdot \nabla_x A - \nabla_x \omega \cdot \nabla_k A = 0$$

Wang, Villas Bôas, Young, and Vanneste [JFM 2023 – Part A accepted. Parts B-C coming soon.]

The U2H map: theory corroborates numerical results

▶ Maps the surface current ("U") to H_s ("H") anomalies

Assumptions:

- 1. Scale separation between waves and currents.
- 2. No sources/sinks of action.
- 3. Weak current $\rightarrow \varepsilon = U/c \ll 1$

$$\partial_t A + \nabla_k \omega \cdot \nabla_x A - \nabla_x \omega \cdot \nabla_k A = 0$$

Wang, Villas Bôas, Young, and Vanneste [JFM 2023 – Part A accepted. Parts B-C coming soon.]

The U2H map: theory corroborates numerical results

▶ Maps the surface current ("U") to H_s ("H") anomalies

Assumptions:

- 1. Scale separation between waves and currents.
- 2. No sources/sinks of action.
- 3. Weak current $\rightarrow \varepsilon = U/c \ll 1$

$$\partial_t A + \nabla_k \omega \cdot \nabla_x A - \nabla_x \omega \cdot \nabla_k A = 0$$

Wang, Villas Bôas, Young, and Vanneste [JFM 2023 – Part A accepted. Parts B-C coming soon.]

