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Waves, currents, and winds are coupled

* Waves impact momentum, energy, heat,
and gas fluxes

Winds make waves

 Enhance mixing (Langmuir turbulence)

Winds make currents

— Waves change the drag

O on the atmosphere
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e Affects pathways of pollutants, plastics,
ice, and algae.

* |mpact the retrieval and interpretation of ittt e
' frequency {88 ' bubbles and sea spray
remote sensing measurements
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Waves/wave-breaking generate
currents and turbulence

Villas Boas and Pizzo (2021)
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Waves, currents, and winds are coupled

The SKRIPS model framework (Sun et al., 2021)
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See also Sun et al. (2019, 2021, 2022)
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Waves, currents, and winds are coupled

The SKRIPS model framework (Sun et al., 2021)
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See also Sun et al. (2019, 2021, 2022)
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Models suggest that the spatial variability of Hs at scales
between 10-100km is driven by currents

W

W
Ul

=
¥
D)
=
——
O
—

w
N

—125 =124 -123 —-122 -121 -120 —125 =124 -123 —-122 -121 -120
Longitude [°E] Longitude [°E]

See also: Romero et al (2017, 2020), Ardhuin et al. (2017), Villas Bbas et al. 2020, Marechal and Ardhuin 2021
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Models suggest that the spatial variability of Hs at scales
between 10-100km is driven by currents -

with or without U
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See also: Romero et al (2017, 2020), Ardhuin et al. (2017), Villas Bbas et al. 2020, Marechal and Ardhuin 2021
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More vorticity
- . agn 5 5 distance [km]
The spatial variability of H_ is highly

dependent on the nature of the flow
Villas Bdas et al, (2020); Villas Bbas and Young (2020)

More divergence

Shallower
spectral slope

 Rotational currents lead to stronger gradients
than divergent currents.

 Highly anisotropic H, (streaks aligned with the
wave propagation)

distance [km]

e Shallower KE spectral slopes imply finer
structures in H

Theory supports modeling results:

Wang et al. [JFM 2023], Part B finishing revisions [eiitazs
[available on arXiv], Part C on the works T R R

Steeper
spectral slope
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Wavelev\g‘th Lkwd

¥ What we know © wo &
* Modeling and theory suggest a scale dependence between currents and :E SP?-C:’“*‘
s spectrum

significant wave height

* \orticity/Refraction is the main mechanism driving the spatial variability of
Hs at scales shorter than storm-scale

* Not necessarily the case for higher moments - See for example Rascle
et al. (2016) and Lenain and Pizzo (2021).

™
§
N
d\/’
V
<
C
0
5
"3‘-
A
5
-
A
v
A

Slnip ADCP
HFR
Dopp\ﬁs Currents

-------d

- P lometo“'\/ MeSOSCOKlC SuBMQSOSCO\IC
scale

0.015 0.01 0.5
Wavenumber r.cpka

COLORADOSCHOOLOFMINES MINES.EDU

) EARTH ENERGY ENVIRONMENT



Wavel ev\g'th Lkwd

¥, What we know o 00 80

* Modeling and theory suggest a scale dependence between currents and oo

. . . altimet Hs cTrum
significant wave height X ameny 777

* \orticity/Refraction is the main mechanism driving the spatial variability of
Hs at scales shorter than storm-scale

* Not necessarily the case for higher moments - See for example Rascle
et al. (2016) and Lenain and Pizzo (2021).
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® What we don’t know

-------d

Dopp\ﬁs Currents

 Can we observe this relationship? Does it break down at any particular 7/ N0 77 0 e
scale? iy esoscale  Submesoscale
* Present evidence is limited to ~30 km (Quilfen and Chapron, 2019) - 0015 001 05
avenumoer pKm

e \We lack collocated observations of waves and currents

e What is the impact of current-induced refraction on higher moments (e.g., Stokes Drift) and air-sea fluxes?
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CDIP-029
CDIP-067
CDIP-071
CDIP-076
CDIP-203
CDIP-222

SWOT calval

SD #1062
SD #1072
SD #1073

SD #1074 |.

SD #1075
MASS
Spray

Observing sea state gradients from S-MODE and SWOT
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- J — Surface
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Float
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MASS airborne lidar observations

Scripps Air-sea lab Time=67.7 sec

Modular Aerial Sensing System (MASS) o
NDBC Station 42040

29.212°N 88.207°W
19 Oct 2011 .,

Sbatial resolution
0.25x0.25m

1000 2000 4000 5000

From Luc Lenain (SIO)
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MASS observations of /1, under two different wave conditions

E(k, 6)

-6 —3 0 3
glm?/rad/m]

S-MODE pilot (Nov 2021)

 \Wind sea, high frequency
and directional
spreading, relatively low
Hs (~ 3 m).
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MASS observations of /1, under two different wave conditions

S-MODE pilot (Nov 2021)

 \Wind sea, high frequency
and directional

spreading, relatively low
Hs (~ 3 m).

S-MODE pilot (Oct 2021)

e Swell, low frequency and
directional spreading,

high Hs (~ 8 m) &
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Wave groups lead to spatial variability of /1,

Hs [m]
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Strong swell, narrow-banded spectrum
SSH field modulated by groups
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There Iis no (spatial) scale separation between group and current
modulation of /7,

¢ Synthetic CDIP-Buoy

Mesoscale

More wave groups
’, sroup ” ., Less wave groups
- K — <l ”
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There Iis no (spatial) scale separation between group and current
modulation of /1, Expectation @
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There Iis no (spatial) scale separation between group and current
modulation of /71, Reality @

_ Wavelength [km]
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Observing waves from SWOT

COLORADOSCHOOLOFMINES MINES EDU

EEEEEEEEEEEEEEEEEEEEEE



Observing waves from SWOT

. CDIP-629 SD #1062
+ SWOT maps the . op0rt b #1075
e g i ) CDIP-076 SD #1074 |
ocean surface
topography via two
parallel 50 km-wide
swaths every 21 days

CDIP-203 SD #1075
CDIP-222 MASS
SWOT calval

SWOT
calval

« SWOT's focuses on SSH measurement
but surprise, surprise....
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Opportunities and challenges from SWOT observations

SWOT can see long swells and groups!

What is the role of group modulation on air-sea fluxes?

COLORADOSCHOOLOFMINES MINES EDU

EARTH # ENERGY &#¢ ENVIRONMENT




Opportunities and challenges from SWOT observations

And map the 2D significant wave height
SWOT can see I0ng swells and groups! (thanks to Alejandro Bohe’s algorithm)
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Waves and winds from SWOT in the Southern Ocean
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Villas Bbas et al (in prep)
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Wind-Wave-Current coupling in the Gulf Stream
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Villas Bboas et al (in prep)

COLORADOSCHOOLOFMINES MINES.EDU

EARTH ENERGY ENVIRONMENT



Remember the anisotropy in the models?
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Hs [m]
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e SWOT observations reveal 2.0 2.6 3.2

highly anisotropic H that
Hs=3.9m
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Geostrophic Velocity [m/s]
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Take home:
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Take home:

v, The wave field looks like this Not like this

TITLY ssssssmessssnadinannnnnny
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Take home:

v, The wave field looks like this Not like this

: ~
up”

-------------------------------
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» How do current-induced sea state gradients feedback into the coupled Earth system?
» Do these relatively small scale variability have a net effect on large (climate) scales?

» Should we be thinking about this when developing wave-aware parametrizations for coupled models?

» \We focused on HS here, but some of this can be extrapolated to Stokes drift, mss, etc.

» Should we be thinking about this when developing GMF’s and/or using wave model output to contrains satellite obs?
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OCEANOGRAPHY

Pt \We're hiring!

ines Oceanography has 1 PhD and 2 postd
positions open Iin air-sea interaction

villasbhoas@mines.edu

MINES IS NUMBER 51!

The latest US News and World Report ranking of
Geophysics and Seismology graduate programs
shows MINES Geophysics at #5!
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Take home:

v, The wave field looks like this Not like this
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» How do current-induced sea state gradients feedback into the coupled Earth system?
» Do these relatively small scale variability have a net effect on large (climate) scales?

» Should we be thinking about this when developing wave-aware parametrizations for coupled models?

» \We focused on HS here, but some of this can be extrapolated to Stokes drift, mss, etc.

» Should we be thinking about this when developing GMF’s and/or using wave model output to contrains satellite obs?
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Backup
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Numerical modeling

suggests that:

* The spatial variablility of Stokes drift
results from a combined response
to wind forcing and amplitude/
frequency modulation due to
currents

 What is the relative importance
of refraction and bunching
(concertina)?
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Marechal et al., in prep See also Romero et al., 2020
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The U2H map: theory corroborates numerical results

» Maps the surface current (“U”) to H, (“H”) anomalies

Assumptions:
1. Scale separation between waves and currents.

2. No sources/sinks of action.
3.Weak current > e =U/c <« 1

0A+V,0-V,A-V . w-V,A=0

magic asymptotics
tricks

Wang, Villas Bbas, Young, and Vanneste [JFM 2023 — Part A accepted. Parts B-C coming soon.]
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The U2H map: theory corroborates numerical results

» Maps the surface current (“U”) to H, (“H”) anomalies

Assumptions:

1. Scale separation between waves and currents.

(a) Current

l r

2. No sources/sinks of action.
3.Weak current > e =U/c <« 1

0A+V,w-V.A—V. -V, A=0

magic asymptotics
tricks

Vo

surface
currents _’ C

Wang, Villas Bbas, Young, and Vanneste [JFM 2023 — Part A accepted. Parts B-C coming soon.]
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The U2H map: theory corroborates numerical results

» Maps the surface current (“U”) to H, (“H”) anomalies surface U2k A few secs

currents ——-  ON your laptop

Assumptions:

1. Scale separation between waves and currents.

a) Current

l »

2. No sources/sinks of action.
3.Weak current > e =U/c <« 1

0A+V,w-V.A—V. -V, A=0

magic asymptotics
tricks

Vo

surface lots of
currents _ CPU hours

Wang, Villas Bbas, Young, and Vanneste [JFM 2023 — Part A accepted. Parts B-C coming soon.]
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