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Towards better extreme winds



Motivation
°

Earlier study made on 99" percentiles winds

Recent analysis of changes in extreme wind speeds over the global ocean (2007-2020) [Giesen, Stoffelen (2022)]
@ Scatterometer observations: MetOp-A ASCAT L3 reprocessed surface winds
o Collocated model winds: ERA5 (ECMWF Reanalysis v5)—also hourly
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Objective: obtain better extreme winds

Extremes are rare by definition, so working with e.g. 99""-percentile winds can be very noisy

ESA MAXSS project
Decadal trends in hurricane wind speeds — need to go even higher



https://www.maxss.org/
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Objective: obtain better extreme winds

Extremes are rare by definition, so working with e.g. 99""-percentile winds can be very noisy

ESA MAXSS project
Decadal trends in hurricane wind speeds — need to go even higher

@ Extreme value theory: apply methods used in climate attribution at KNMI
percentile interpolation — more consistent results; consider higher percentiles

Idea

@ Start with ASCAT-A, then consider earlier instruments and compare each separately against ERAb
(different winds extreme statistics: because of calibration and rain contamination)


https://www.maxss.org/
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Start with ASCAT-A & collocated ERAb

@ ASCAT-A L3 product: 0.25° (less noise) & 0.125° (sharper gradients and higher wind speeds):
very stable, about 15 years of data; we also consider collocated ERA5 model winds.

@ Consider a few tropical basins separately: the Caribbean and the Atlantic 0-30° N & S

One example day with extreme winds in the North Atlantic (264th day of 2020)
ASCAT-A L3 0.25 (ascending pass)

80°W 60°W 40°W 20°W 0°
v, S

stress equivalent wind speed
at 10 m [m s-1]
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coe

Start with ASCAT-A & collocated ERAb

@ ASCAT-A L3 product: 0.25° (less noise) & 0.125° (sharper gradients and higher wind speeds):
very stable, about 15 years of data; we also consider collocated ERA5 model winds.

@ Consider a few tropical basins separately: the Caribbean and the Atlantic 0-30° N & S

One example day with extreme winds in the North Atlantic (264th day of 2020)
ASCAT-A L3 0.12 (ascending pass)

60°W 40°W 20°W 0°

stress equivalent wind speed
at 10 m [m s-1]



Extreme value theory
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®00

Extreme order statistics: Extreme Value Theory

Very interesting topic: used, for instance to assess the required height of dikes in the Netherlands

“® Royal Netherlands

59 Meteorological Institute
Ministry of Infrastructure
and Water Management

Estimation of wind speeds with very
high return periods from large datasets
generated by weather prediction
models : statistical aspects

C.F. de Valk, H.W. van den Brink

De Bilt, 2020 | Scientific report; WR 2020-01
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Extreme order statistics: Extreme Value Theory

1.2. Classical extreme value theory. The principal concern of classical ex-
treme value theory is with ic distributi ies of the i
M, = max(é,, £,..., £,) from an iid. sequence (£} as n - oo. Whereas the
distribution function (d.f.) of M, may be written down exactly [ P(M,, < x} =
. Fn(x), where F is the d.f. of each £;], there is nevertheless virtue in obtaining
For sequences of independent, asymptotic distributions, which are lés dependent on the procise form of F, Le.

relations of the form

identically distributed random variables (12)

Pa,(M, = b,) s x} =, G(x), asn— oo,
where G is a nondegenerate d.f. and a, > 0, b,, are normalizing constants.
. : sctrihint i The central result of classical extreme value theory, due in varying degrees of
Fx (1‘) : cumulative distribution function (C D F) generality to Fréchet [47], Fisher and Tippett [46) and Gnedenko [50], restricts
the class of possible limiting d.£'s G in (1.2.1) to essentially three different types

as follows.

THEOREM 12.1 (Extremal types theorem). Let M, = max(é,, $,,...,4,),

Extreme Value Theory, classical result: where £, are i.id. If (12.) holds for some constants a, > 0, b, and some
nondegenerate G, then G must have one of the following forms (in which x may
be replaced by ax + b for any a > 0, b:

3 three different classes of distributions to be fitted opel: G(s) = exp(-e)  —o << o,
either Gumbel, Weibull, or Fréchet

(block maxima)

0, x<0,
opell: G(x) = {exp(—x"), forsomea>0, x>0,

. _ [exp(=(-x)"), for some a >0, x<0,
type III: G(x) {l, o0

[Leadbetter, Rootzen (1988)]
Study the tail of distributions; look at 1 — F'x(z) (exceedance)

Asymptotic statistical model of tails fitted to the data

= Interpolating or even extrapolating percentiles, using an asymptotic arguments (important caveat)
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Block maxima & peak over threshold

time
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Block maxima & peak over threshold

: [
= e = = :
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1st block 2nd block 3rd block 4th block 5th block

Block maxima
@ e.g. look at distribution of yearly maxima
@ parameter: needs to select the block size
@ throws away most of the data

@ less worry about independence
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Block maxima & peak over threshold

time

Block maxima Peak over threshold
@ e.g. look at distribution of yearly maxima @ more recent approach [Leadbetter (1991)], [Coles (2001)]
@ parameter: needs to select the block size @ parameter: needs to select the threshold
@ throws away most of the data @ retains all the large values

@ less worry about independence @ more worry about independence
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Block maxima & peak over threshold

time

Peak over threshold
@ more recent approach [Leadbetter (1901)], [Coles (2001)]
@ parameter: needs to select the threshold
@ retains all the large values

@ more worry about independence



Developing our method
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Motivation to work at basin level

There is a balance:
@ we want to be sensitive to more extreme winds (incentive to increase the threshold)

@ however, the higher the threshold, the less data available for the fit (incentive to lower it)

caribbean 2007-2014, latitude:19.38°, longitude:281.62°

. «  ascending mode
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stress equivalent wind speed
at10 m[ms-1]
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days

Time series for a pixel in the middle of the Caribbean basin (2007-2014 period)



Motivation to work at basin level

There is a balance:

@ we want to be sensitive to more extreme winds (incentive to increase the threshold)

@ however, the higher the threshold, the less data available for the fit (incentive to lower it)
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Time series for a pixel in the middle of the Caribbean basin (2007-2014 period)

caribbean 2007-2014, latitude:19.38°, longitude:281.62°

« ascending mode
—— 90th percentile (that location)
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Motivation to work at basin level

There is a balance:

@ we want to be sensitive to more extreme winds (incentive to increase the threshold)

@ however, the higher the threshold, the less data available for the fit (incentive to lower it)

caribbean 2007-2014, latitude:19.38°, longitude:281.62°
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Time series for a pixel in the middle of the Caribbean basin (2007-2014 period)
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Motivation to work at basin level

There is a balance:
@ we want to be sensitive to more extreme winds (incentive to increase the threshold)

@ however, the higher the threshold, the less data available for the fit (incentive to lower it)

= As we do not want to compromise on either — we work at basin level.
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Interpolating percentiles with peak over threshold

We use a high percentile as threshold. Then:
@ lower percentiles are simply calculated based on the data itself;

@ beyond the threshold, the data are fully replaced by the smooth fit of the tail distribution
— higher percentiles will be calculated using the fit.

caribbean, 2020-2020
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Probability of exceedance P(X > z) =1 — Fx:
— best suited to study tails (semi-log plot)

H
<

._.
5]
&

Link with j-th percentile: .
P(X>z;)=1-Fx(z;)=1- ljﬁ, j € [0,100].
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Interpolating percentiles with peak over threshold

We use a high percentile as threshold. Then:
@ lower percentiles are simply calculated based on the data itself;

@ beyond the threshold, the data are fully replaced by the smooth fit of the tail distribution
— higher percentiles will be calculated using the fit.

caribbean, 2020-2020

o Threshold: 99.99th percentile

e Probability of exceedance P(X > z) =1 — Fx:
g7 — best suited to study tails (semi-log plot)
§10-3
S Link with j-th percentile:
P(X >z;)=1-Fx(z;)=1—-%, je[0,100].
210 100

1076 \
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stress equivalent wind speed at 10 m (m s-1)
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Interpolating percentiles with peak over threshold

We use a high percentile as threshold. Then:
@ lower percentiles are simply calculated based on the data itself;

@ beyond the threshold, the data are fully replaced by the smooth fit of the tail distribution
— higher percentiles will be calculated using the fit.

caribbean, 2020-2020

S Threshold: 99.99th percentile

1 = expon fit of the tail .

b Probability of exceedance P(X > z) =1 — Fx:
g — best suited to study tails (semi-log plot)
%10'3
0 Link with j-th percentile:
8 P(X>LE]’)=1—F)((.Z‘J‘)=1—7, jG[O,lOO].
g 100
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stress equivalent wind speed at 10 m (m s-1)
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Interpolating percentiles with peak over threshold

We use a high percentile as threshold. Then:

@ lower percentiles are simply calculated based on the data itself;

@ beyond the threshold, the data are fully replaced by the smooth fit of the tail distribution
— higher percentiles will be calculated using the fit.

Probability of exceedence
= = s = = -
1) 5 =) 5] 5 ) =
5 & IS & L L2

._.
)
L

caribbean, 2020-2020

Threshold: 99.99th percentile
= genpareto fit of the tail

T

~

Probability of exceedance P(X > z) =1 — Fx:
— best suited to study tails (semi-log plot)

Link with j-th percentile:
P(X>z;)=1-Fx(z;)=1- ljﬁ, j € [0,100].
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stress equivalent wind speed at 10 m (m s-1)
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Now, the issue of dependence in the data must still be addressed
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Formal requirement: independent, identically distributed random variables

Beware not to count several times the same event (assumption of independent random variables)

interexceedance timf

VA

upcrossings

~Y
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Formal requirement: independent, identically distributed random variables

Beware not to count several times the same event (assumption of independent random variables)

interexceedance timf

VA

probable dependence

upcrossings

~Y

@ Achieving independent data: problem of throwing away too much data that is already very scarce.
@ Better to keep data and then assess standard error instead — use the block-bootstrap method.

= rather than trying to obtain sufficiently independent data, we are going to estimate the dependence
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Block bootstrap

original doys resampled doys
3.0 4

3.0

25
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2.0
2.0
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We resample randomly but make sure to preserve the temporal & spatial correlations in the data:
@ randomly pick blocks of 7 consecutive days (~ time for TC to cross a basin) & take all swaths

@ moreover: respect seasonality when resampling the data
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Block bootstrap: how a single resampling looks like

Probability of exceedence
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caribbean, 2020-2020 - 366 days used; 1 resamplings.
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Our method
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alue theor

50 resamplings

caribbean, 2020-2020 - 366 days used; 50 resamplings.
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stress equivalent wind speed at 10 m (m s-1)
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Fit independently each resampled dataset obtained with block bootstrap

caribbean, 2020-2020 - 366 days used; 50 resamplings; exponential fits.

10°

Probability of exceedence

0 5 10 15 20 25 30 35 40
stress equivalent wind speed at 10 m (m s-1)

Each new sample is fitted independently (‘exponential’ case).
For each percentile value, a mean wind-speed value and variance will then be obtained from all the fits.
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Fit independently each resampled dataset obtained with block bootstrap

caribbean, 2020-2020 - 366 days used; 50 resamplings; generalised Pareto fits.
10°

Probability of exceedence

0 5 10 15 20 25 30 35 40
stress equivalent wind speed at 10 m (m s-1)

Each new sample is fitted independently (‘generalised Pareto’ case).
For each percentile value, a mean wind-speed value and variance will then be obtained from all the fits.
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Estimate mean

LRSS
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Bonus, using all these resampled datasets directly (‘raw’ case; no fit):
For each percentile value, a mean wind-speed value and variance can also be empirically obtained.



Sample results
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caribbean, 2020-2020 - 50 resamplings; 50 exponential fits used
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caribbean, 2020-2020 - 50 resamplings; 50 generalised Pareto fits used
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caribbean, 2020-2020 - 50 resamplings; 50 exponential fits used
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empirical percentiles for the original dataset
. —— mean percentile value (block-bootstrap data)

10 —— mean percentile value (fit)
o - Threshold: 99.99th percentile
2 102
< 10
o
[
(o
£ 103
(U
kS
2107
=
(]
Q
© 107
o

10-6

1077

0 5 10 15 20 25 30 35 40

stress equivalent wind speed at 10 m (m s-1)



tivation xtreme value theory h Sample results
©0®0000

caribbean, 2020-2020 - 50 resamplings; 50 generalised Pareto fits used
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Caribbean basin — 0.125°, collocated ERA5 model winds

caribbean, 2020-2020 - 50 resamplings; 50 exponential fits used
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Caribbean basin — 0.125°, collocated ERA5 model winds

caribbean, 2020-2020 - 50 resamplings; 50 generalised Pareto fits used
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Summary results for Caribbean basin, 09.999th percentile

wind_speed (m/s)
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caribbean 99.999th percentile
(raw, 50 resamplings)

caribbean 99.999th percentile
(genpareto, 50 resamplings)

caribbean 99.999th percentile
(expon, 50 resamplings)

2007 2009 2011 2013 2015 2017 2019 2021

year

2007 2009 2011 2013 2015 2017 2019 2021
year

2007 2009 2011 2013 2015 2017 2019 2021
year

Extremely robust and stable up to the 99.999*" percentile

This is our main result. The 3 cases are hard to distinguish.
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Summary results for Caribbean basin, 99.999'" percentile (ERA5)

caribbean 99.999th percentile caribbean 99.999th percentile caribbean 99.999th percentile
(raw, 50 resamplings) (genpareto, 50 resamplings) (expon, 50 resamplings)
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Extremely robust and stable up to the 99.999*" percentile

This is our main result. The 3 cases are hard to distinguish.
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Summary results for Caribbean basin, 09.9999th percentile

caribbean 99.9999th percentile caribbean 99.9999th percentile caribbean 99.9999th percentile
(raw, 50 resamplings) (genpareto, 50 resamplings) (expon, 50 resamplings)
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Still very consistent even at the 99.9999*" percentile.
y p

If decadal trends in tropical cyclones exist, they will be visible at these levels
Simply no need to go further (only making conclusions conditional on further assumptions)



Summary results for Caribbean

_speed (m/s)

se_model_s|

Simply no need to go further (only making conclusions conditional on further assumptions)
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Sample results
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basin, 99.9999'" percentile (ERAD)

caribbean 99.9999th percentile
(genpareto, 50 resamplings)

caribbean 99.9999th percentile
(expon, 50 resamplings)
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year

year

Still very consistent even at the 99.9999*" percentile.
y p

If decadal trends in tropical cyclones exist, they will be visible at these levels
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Summary results for North Atlantic basin, 09.999th percentile

wind_speed (m/s)
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Extremely robust and stable up to the 99.999*" percentile

This is our main result. The 3 cases are hard to distinguish.




Sample results
©0000®0

Summary results for North Atlantic basin, 09.9999th percentile

atl_0030n 99.9999th percentile atl_0030n 99.9999th percentile atl_0030n 99.9999th percentile
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Still very consistent even at the 99.9999*" percentile.
y p

If decadal trends in tropical cyclones exist, they will be visible at these levels
Simply no need to go further (only making conclusions conditional on further assumptions)
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On threshold dependence

caribbean, 2020-2020 - 50 resamplings; 50 generalised Pareto fits used
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Our choice for the amount of data, and we further restrict ourselves down to 10~ at most
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On threshold dependence

caribbean, 2020-2020 - 50 resamplings; 50 generalised Pareto fits used
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stress equivalent wind speed at 10 m (m s-1)

Likely too much weight/trust on winds not associated with tropical cyclones and/or the tail model
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On threshold dependence

caribbean, 2020-2020 - 50 resamplings; 50 generalised Pareto fits used
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Our choice for the amount of data, and we further restrict ourselves down to 10~ at most
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On threshold dependence
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caribbean, 2020-2020 - 50 resamplings; 50 generalised Pareto fits used

Robustness

empirical percentiles for the original dataset considered
——— mean percentile value (block-bootstrap data)
—— mean percentile value (fit)
« Threshold: 99.999th percentile

Robust 99.999%" percentile results against
these various threshold choices
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stress equivalent wind speed at 10 m (m s-1)

Likely too much trust put on the overly scarce data:

30 35 40

risk of overfitting
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Summary

We obtain very robust results at basin level, without relying on a strong assumption for the tail

@ Exponential fits
o Generalised Pareto fits Very consistent results

@ Empirical mean & variance from block-bootstrap resampled data

Results are extremely stable down to a probability of exceedence of 10™5 <— main result
@ still quite consistent within the uncertainties, down to 1076 <« slight differences can then appear

@ robust against changes in the approach, such as the number of resamplings, or the threshold

This allows peering at extreme percentiles high enough to correspond to tropical cyclone winds

— powerful tool to assess the existence significant of decadal trends, once applied to 30 yr of data
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Continuing this work

A longer period is needed to enable conclusions on decadal trends in tropical cyclone winds

(also e.g. to avoid being too sensitive to El Nifio-index variations)

Our method is ready for use with earlier scatterometer datasets, also generated at KNMI

We now want to apply it to ERS, QuikSCAT, ASCAT data, using ERA5 as comparison

alexandre.payez@knmi.nl
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Earlier study made on 99" percentiles winds (scatterometers & ECMWF)

[Giesen, Stoffelen (2022)]
99" percentile study, per basin and smaller subregions

1. Pacific SE of Kamchatka 2. Atlantic Gulfstream 3. Atlantic south of Iceland

Wind speed [m s3]

2010 2015 2020 2010 2015 2020 2010 2015 2020
- 4. Indian south subtropics 5. Pacific Tasman Front 6. Pacific east of Solomon
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Figure 2.1.3. Time series (2007-2020) and linear trends of annual 99th percentile extreme wind speeds over selected regions with
large trends (see Figure 2.1.2(c), for ASCAT-A, collocated and original ERAS. Trends not significant at the 90% confidence level are
shown with dotted instead of dashed lines.
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Earlier study made on 99" percentiles winds (scatterometers & ECMWF)

[Giesen, Stoffelen (2022)]

60°E 120°€ 180"

Figure 2.1.2. ASCAT-A 99th wind speed percentie (2) cimatology (2007-2014), (b) annual anomaly for 2020 and (c) annual trend
(2007-2020). Areas with trends significant above the 90% confidence level are outined in black. Regions examined in more detail
are indicated with numbered boes.
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On deriving trends using only a few years

2020 anomalies and 2007-2020 trends
(OSR®6)

[Giesen, Stoffelen (2022)]
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On deriving trends using only a few years

2022 anomalies and 2007-2022 trends
(will appear in OSR8)
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[Giesen, Stoffelen (202X)]
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Wind speeds: buoys vs dropsondes

[Giesen, Stoffelen (2022)]

Wind speed Wind speed scaled
ms™'] ms™]
5.5-7.9 5.5-7.9
8.0-10.7 8.0-10.7

10.8-13.8 10.8-15.3
13.9-171 15.4-21.3
17.2-20.7 21.4-28.0
20.8-24.4 28.1-35.2
24.5-28.4 35.3-433
28.5-32.6 43.4-52.0

>32.6 >52.0
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