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Earlier study made on 99th percentiles winds

Recent analysis of changes in extreme wind speeds over the global ocean (2007–2020) [Giesen, Stoffelen (2022)]

Scatterometer observations: MetOp-A ASCAT L3 reprocessed surface winds
Collocated model winds: ERA5 (ECMWF Reanalysis v5)—also hourly
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Objective: obtain better extreme winds

Extremes are rare by definition, so working with e.g. 99th-percentile winds can be very noisy

ESA MAXSS project
Decadal trends in hurricane wind speeds → need to go even higher

Idea
Extreme value theory: apply methods used in climate attribution at KNMI
percentile interpolation → more consistent results; consider higher percentiles

Start with ASCAT-A, then consider earlier instruments and compare each separately against ERA5
(different winds extreme statistics: because of calibration and rain contamination)
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Start with ASCAT-A & collocated ERA5

ASCAT-A L3 product: 0.25° (less noise) & 0.125° (sharper gradients and higher wind speeds):
very stable, about 15 years of data; we also consider collocated ERA5 model winds.
Consider a few tropical basins separately: the Caribbean and the Atlantic 0–30° N & S

One example day with extreme winds in the North Atlantic (264th day of 2020)
ASCAT-A L3 0.25 (ascending pass)
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Start with ASCAT-A & collocated ERA5

ASCAT-A L3 product: 0.25° (less noise) & 0.125° (sharper gradients and higher wind speeds):
very stable, about 15 years of data; we also consider collocated ERA5 model winds.
Consider a few tropical basins separately: the Caribbean and the Atlantic 0–30° N & S

One example day with extreme winds in the North Atlantic (264th day of 2020)
ASCAT-A L3 0.12 (ascending pass)
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Extreme order statistics: Extreme Value Theory

Very interesting topic: used, for instance to assess the required height of dikes in the Netherlands

De Bilt, 2020 | Scientific report; WR 2020-01

Estimation of wind speeds with very 
high return periods from large datasets 
generated by weather prediction 
models : statistical aspects

C.F. de Valk, H.W. van den Brink

Ministry of Infrastructure 

and Water Management
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Extreme order statistics: Extreme Value Theory

For sequences of independent,
identically distributed random variables

FX(x): cumulative distribution function (CDF)

Extreme Value Theory, classical result:

∃ three different classes of distributions to be fitted
either Gumbel, Weibull, or Fréchet

(block maxima)

[Leadbetter, Rootzen (1988)]

Study the tail of distributions; look at 1− FX(x) (exceedance)

Asymptotic statistical model of tails fitted to the data
⇒ Interpolating or even extrapolating percentiles, using an asymptotic arguments (important caveat)
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Block maxima & peak over threshold

time

Block maxima
e.g. look at distribution of yearly maxima

parameter: needs to select the block size

throws away most of the data

less worry about independence

Peak over threshold
more recent approach [Leadbetter (1991)], [Coles (2001)]

parameter: needs to select the threshold

retains all the large values

more worry about independence
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Motivation to work at basin level

There is a balance:

we want to be sensitive to more extreme winds (incentive to increase the threshold)

however, the higher the threshold, the less data available for the fit (incentive to lower it)

Time series for a pixel in the middle of the Caribbean basin (2007–2014 period)
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Motivation to work at basin level

There is a balance:

we want to be sensitive to more extreme winds (incentive to increase the threshold)

however, the higher the threshold, the less data available for the fit (incentive to lower it)

⇒ As we do not want to compromise on either → we work at basin level.

IOVWST 2024 Alexandre Payez 8|22



Motivation Extreme value theory Our method Sample results Summary

Interpolating percentiles with peak over threshold

We use a high percentile as threshold. Then:
lower percentiles are simply calculated based on the data itself;
beyond the threshold, the data are fully replaced by the smooth fit of the tail distribution
→ higher percentiles will be calculated using the fit.

Probability of exceedance P (X > x) = 1− FX :
→ best suited to study tails (semi-log plot)

Link with j-th percentile:
P (X > xj) = 1− FX(xj) = 1− j

100
, j ∈ [0, 100].
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Interpolating percentiles with peak over threshold

We use a high percentile as threshold. Then:
lower percentiles are simply calculated based on the data itself;
beyond the threshold, the data are fully replaced by the smooth fit of the tail distribution
→ higher percentiles will be calculated using the fit.

Probability of exceedance P (X > x) = 1− FX :
→ best suited to study tails (semi-log plot)

Link with j-th percentile:
P (X > xj) = 1− FX(xj) = 1− j

100
, j ∈ [0, 100].

Now, the issue of dependence in the data must still be addressed
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Formal requirement: independent, identically distributed random variables

Beware not to count several times the same event (assumption of independent random variables)
interexceedance time

upcrossings

v

t

Achieving independent data: problem of throwing away too much data that is already very scarce.

Better to keep data and then assess standard error instead → use the block-bootstrap method.

⇒ rather than trying to obtain sufficiently independent data, we are going to estimate the dependence
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Formal requirement: independent, identically distributed random variables

Beware not to count several times the same event (assumption of independent random variables)
interexceedance time

upcrossings

probable dependence

v

t

Achieving independent data: problem of throwing away too much data that is already very scarce.

Better to keep data and then assess standard error instead → use the block-bootstrap method.

⇒ rather than trying to obtain sufficiently independent data, we are going to estimate the dependence

IOVWST 2024 Alexandre Payez 10|22



Motivation Extreme value theory Our method Sample results Summary

Block bootstrap

We resample randomly but make sure to preserve the temporal & spatial correlations in the data:

randomly pick blocks of 7 consecutive days (∼ time for TC to cross a basin) & take all swaths

moreover: respect seasonality when resampling the data

IOVWST 2024 Alexandre Payez 11|22



Motivation Extreme value theory Our method Sample results Summary

Block bootstrap: how a single resampling looks like

IOVWST 2024 Alexandre Payez 12|22



Motivation Extreme value theory Our method Sample results Summary

Block bootstrap: 50 resamplings
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Fit independently each resampled dataset obtained with block bootstrap

Each new sample is fitted independently (‘exponential’ case).
For each percentile value, a mean wind-speed value and variance will then be obtained from all the fits.
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Fit independently each resampled dataset obtained with block bootstrap

Each new sample is fitted independently (‘generalised Pareto’ case).
For each percentile value, a mean wind-speed value and variance will then be obtained from all the fits.
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Estimate mean and variance of percentiles from block bootstrap samples

Bonus, using all these resampled datasets directly (‘raw’ case; no fit):
For each percentile value, a mean wind-speed value and variance can also be empirically obtained.
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Caribbean basin – 0.125°
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Caribbean basin – 0.125°
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Caribbean basin – 0.25°
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Caribbean basin – 0.25°
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Caribbean basin – 0.125°, collocated ERA5 model winds
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Caribbean basin – 0.125°, collocated ERA5 model winds
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Summary results for Caribbean basin, 99.999th percentile

w
in

d
_s

p
e
e
d

 (
m

/s
)

year

caribbean 99.999th percentile
(raw, 50 resamplings)

 10

 15

 20

 25

 30

 35

 40

 2007 2009 2011 2013 2015 2017 2019 2021

w
in

d
_s

p
e
e
d

 (
m

/s
)

year

caribbean 99.999th percentile
(genpareto, 50 resamplings)

 10

 15

 20

 25

 30

 35

 40

 2007 2009 2011 2013 2015 2017 2019 2021

w
in

d
_s

p
e
e
d

 (
m

/s
)

year

caribbean 99.999th percentile
(expon, 50 resamplings)

 10

 15

 20

 25

 30

 35

 40

 2007 2009 2011 2013 2015 2017 2019 2021

Extremely robust and stable up to the 99.999th percentile
This is our main result. The 3 cases are hard to distinguish.
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Summary results for Caribbean basin, 99.999th percentile (ERA5)
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Summary results for Caribbean basin, 99.9999th percentile
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Still very consistent even at the 99.9999th percentile.

If decadal trends in tropical cyclones exist, they will be visible at these levels
Simply no need to go further (only making conclusions conditional on further assumptions)
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Summary results for Caribbean basin, 99.9999th percentile (ERA5)
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Still very consistent even at the 99.9999th percentile.

If decadal trends in tropical cyclones exist, they will be visible at these levels
Simply no need to go further (only making conclusions conditional on further assumptions)
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Summary results for North Atlantic basin, 99.999th percentile
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Extremely robust and stable up to the 99.999th percentile
This is our main result. The 3 cases are hard to distinguish.
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On threshold dependence

Robustness

Robust 99.999th percentile results against
these various threshold choices

Our choice for the amount of data, and we further restrict ourselves down to 10−6 at most
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On threshold dependence

Robustness

Robust 99.999th percentile results against
these various threshold choices

Likely too much weight/trust on winds not associated with tropical cyclones and/or the tail model
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On threshold dependence

Robustness

Robust 99.999th percentile results against
these various threshold choices

Likely too much trust put on the overly scarce data: risk of overfitting
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Summary

We obtain very robust results at basin level, without relying on a strong assumption for the tail

Exponential fits

Generalised Pareto fits

Empirical mean & variance from block-bootstrap resampled data

Results are extremely stable down to a probability of exceedence of 10−5 ← main result
still quite consistent within the uncertainties, down to 10−6 ← slight differences can then appear

robust against changes in the approach, such as the number of resamplings, or the threshold

This allows peering at extreme percentiles high enough to correspond to tropical cyclone winds
→ powerful tool to assess the existence significant of decadal trends, once applied to 30 yr of data

Very consistent results
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Continuing this work

A longer period is needed to enable conclusions on decadal trends in tropical cyclone winds
(also e.g. to avoid being too sensitive to El Niño-index variations)

Our method is ready for use with earlier scatterometer datasets, also generated at KNMI

We now want to apply it to ERS, QuikSCAT, ASCAT data, using ERA5 as comparison

alexandre.payez@knmi.nl
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Earlier study made on 99th percentiles winds (scatterometers & ECMWF)
[Giesen, Stoffelen (2022)]

99th percentile study, per basin and smaller subregions

Compared to the northern hemisphere storm tracks,
the interannual variability in the P99% wind speeds in the
southern hemisphere storm tracks is small (boxes 7 and
8). Contrasts between the ocean basins are large. Predo-
minant and large positive trends are found in the
southern Indian Ocean, while trends in the Pacific and
Atlantic Ocean are generally small, both positive and
negative and only locally significant. Negative trends
prevail in the central-southern Pacific.

The bias between scatterometer and collocated ERA5
P99% wind speed climatologies is positive at all latitudes

(Figure 2.1.1(c)), indicating that extreme winds are sys-
tematically lower in ERA5. Biases are typically
0.5 m s−1, with maximum values around the equator
and small biases in the Pacific Ocean around 5°S and
the Indian Ocean near 20°N. The order of magnitude
of the ERA5 biases is similar to the interannual variabil-
ity in the scatterometer P99% wind speeds.

The time series with annual P99% wind speed percen-
tiles for the selected regions corroborate that ERA5
extreme winds are consistently lower than ASCAT-A
extremes (Figure 2.1.3). Biases vary considerably

Figure 2.1.3. Time series (2007–2020) and linear trends of annual 99th percentile extreme wind speeds over selected regions with
large trends (see Figure 2.1.2(c)), for ASCAT-A, collocated and original ERA5. Trends not significant at the 90% confidence level are
shown with dotted instead of dashed lines.
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Earlier study made on 99th percentiles winds (scatterometers & ECMWF)
[Giesen, Stoffelen (2022)]

Figure 2.1.2. ASCAT-A 99th wind speed percentile (a) climatology (2007–2014), (b) annual anomaly for 2020 and (c) annual trend
(2007–2020). Areas with trends significant above the 90% confidence level are outlined in black. Regions examined in more detail
are indicated with numbered boxes.

s12 THE COPERNICUS MARINE SERVICE OCEAN STATE REPORT, ISSUE 6
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On deriving trends using only a few years

2020 anomalies and 2007–2020 trends
(OSR6)

[Giesen, Stoffelen (2022)]
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On deriving trends using only a few years

2022 anomalies and 2007–2022 trends
(will appear in OSR8)

[Giesen, Stoffelen (202X)]
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Wind speeds: buoys vs dropsondes

[Giesen, Stoffelen (2022)]

The L3 wind product includes ECMWF ERA5 reana-
lysis 10 m stress-equivalent winds (de Kloe et al. 2017)
collocated with scatterometer observations at Level 2
and interpolated to the L3 regular grid in an identical
way. P99% wind speeds were calculated from these collo-
cated, identically sampled ERA5 stress-equivalent winds
to allow for direct comparison with ASCAT-A. To
determine the effect of the spatiotemporal sampling
on the results, P99% wind speeds were also computed
from the original ERA5 stress-equivalent wind fields,
from which the collocated ERA5 winds were sampled.

The horizontal resolutions of ASCAT-A (0.125°) and
ERA5 (0.25°) are not sufficient to resolve the large
spatial wind speed gradients in tropical cyclones. Maxi-
mum wind speeds in tropical cyclones will therefore be
underestimated. These most extreme wind speeds are
generally well above the 99th percentile and therefore
outside the scope of our analysis.

Various wind speed scales and units are used in
weather communication, marine navigation and storm
warnings. Commonly used scales are given in Table
2.1.1 to assist the reader in interpreting the wind
speed values presented in this study. In situ observations
of high and extreme wind speeds in tropical cyclones
mainly originate from dropsondes and from moored
buoys in the extratropical regions. While ASCAT scatte-
rometer winds are calibrated with respect to moored
buoys, airplane passive microwave (SFMR) winds use
dropsondes as in-situ reference. A comparison of
ASCAT and SFMR observations revealed that for
wind speeds above 15 m s−1, wind speeds based on
dropsondes are consistently higher than wind speeds
using moored buoys as a reference (Stoffelen et al.
2020). A quadratic relation can be used to derive
ASCAT wind speeds calibrated to the dropsonde refer-
ence:

U ′ = 0.0095 U2 + 1.52 U − 7.6,

with U ′ the calibrated scatterometer wind speed and U

the scatterometer wind speed above 12 m s−1. These
scaled wind speeds are included in Table 2.1.1 for
reference.

2.1.3. Results

The latitudinal variation in the extreme wind speed cli-
matology for 2007–2014 is very similar in the three
major ocean basins (Figure 2.1.1(a)). The 99th percen-
tile wind speeds in the Indian Ocean are higher than
in the Atlantic and Pacific Oceans at most latitudes,
except north of 20°N where the basin becomes narrow.
Especially between 5°N and 15°N, the zonal 99th per-
centiles are considerably higher for the Indian Ocean,
due to strong monsoon winds. While the zonally binned
P99% wind speeds in the northern Atlantic are the high-
est of all basins and latitudes, the Atlantic extreme wind
speeds are generally the lowest at other latitudes.

The global extreme wind climatology map reveals that
the 99th percentile wind speeds range from minima
below 10 m s−1 at the equator to local maximum values
exceeding 25 m s−1 in the northern Atlantic Ocean
(Figure 2.1.2(a)). The highest wind speeds are found
along the southern and south-eastern coast of Greenland.
Cyclones interact with the high topography of Greenland,
forming barrier winds along the southeastern coast and
tip jets at the southernmost point, Cape Farewell
(Moore and Renfrew 2005). The high wind speed regions
in the northern Atlantic, northern Pacific and around
Antarctica align with the North Atlantic, northern
Pacific and the southern hemisphere storm tracks (Hos-
kins and Hodges 2005; Lee et al. 2012; Dong et al. 2013).
The highest wind speeds in the subtropical Pacific are
found in the northwestern part, which is the most active
tropical cyclone region in the world (Schreck et al. 2014).
Although typical wind speeds in tropical cyclones are
generally considerably higher than in extratropical
storms, they do not stand out clearly in the P99% wind
speed climatology because of their relatively small size
and lower number compared to extratropical cyclones.

Table 2.1.1. Beaufort scale for wind speed classification, other commonly used wind speed units and associated probable wave
height.

Beaufort number Description
Wind speed
[knots]

Wind speed
[km h−1]

Wind speed
[m s−1]

Wind speed scaled
[m s−1]

Probable wave height
[m]

4 Moderate breeze 11–16 20–28 5.5–7.9 5.5–7.9 1.0–2.0
5 Fresh breeze 17–21 29–38 8.0–10.7 8.0–10.7 2.0–3.0
6 Strong breeze 22–27 39–49 10.8–13.8 10.8–15.3 3.0–4.0
7 Near gale 28–33 50–61 13.9–17.1 15.4–21.3 4.0–5.5
8 Gale 34–40 62–74 17.2–20.7 21.4–28.0 5.5–7.5
9 Strong gale 41–47 75–88 20.8–24.4 28.1–35.2 7.0–10.0
10 Storm 48–55 89–102 24.5–28.4 35.3–43.3 9.0–12.5
11 Violent storm 56–63 103–117 28.5–32.6 43.4–52.0 11.5–16.0
12 Hurricane >63 >117 >32.6 >52.0 >14.0

Notes: For wind speeds above 12 m s−1, the wind speed scales from buoys/scatterometers and dropsondes diverge and wind speeds calibrated against drop-
sondes are also shown.
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