VALIDATION OF QUIKSCAT-DERIVED COASTAL WINDS

G. Grieco¹ M. Portabella² A. Stoffelen³ A. Verhoef³ J. Vogelzang³ A. Zanchetta⁴ S. Zecchetto^{5,6}
30th May 2024

¹Istituto di Scienze Marine (ISMAR-CNR)

²Barcelona Expert Center (ICM-CSIC)

³Koninglijk Nederlands Meteorologisch Instituut (KNMI)

⁴Department of Music - Hong Kong Baptist University

⁵Istituto di Scienze Polari (ISP-CNR) ⁶Faculty of Intelligent Systems Engineering and Data Science - PGU

Area of interest and collocation criteria

Collocation criteria:

- QuikSCAT/ASAR overlap
- $\Delta t \leq 30'$

- QuikSCAT (QS) σ_0 correction with Noise Regularization [1]
- Quality Control on QS-derived winds
- Comparisons among QS-derived, Convolutional Neural Network (CNN)-derived [2] and ECMWF winds
- Two CNN-derived winds:
 - nearest collocated
 - averaged on a 15-km radius area around WVC (not shown)
- Two areas of interest w.r.t. distance:
 - coastal winds: $d \le 40$ km
 - offshore winds: d > 40 km

Zonal component. CNN₉₀₀

	$U ({\rm ms}^{-1})$		ϕ	(°)
bias	-0.45	0.11	-0.7	4.3
RMSD	1.75	1.73	21.0	22.0
vRMSD	3.91		3.	45

	$U ({\rm ms}^{-1})$		φ (°)	
bias	0.05	0.58	0.3	8.2
RMSD	1.18	1.56	10.3	16.2
vRMSD	1.77		2.45	

	$U ({\rm ms}^{-1})$		φ (°)	
bias	0.51	0.77	1.0	4.3
RMSD	1.57	1.20	20.0	19.0
vRMSD	3.77		3.58	

IOVWST 2024, Salt Lake City, 30th May

Meridional component. CNN₉₀₀

	$U ({\rm ms}^{-1})$		ϕ (°)	
bias	-0.45	0.11	-0.7	4.3
RMSD	1.75	1.73	21.0	22.0
vRMSD	3.91		3.	45

	$U ({\rm ms}^{-1})$		φ (°)	
bias	0.05	0.58	0.3	8.2
RMSD	1.18	1.56	10.3	16.2
vRMSD	1.77		2.45	

	$U ({\rm ms}^{-1})$		φ (°)	
bias	0.51	0.77	1.0	4.3
RMSD	1.57	1.20	20.0	19.0
vRMSD	3.77		3.58	

IOVWST 2024, Salt Lake City, 30th May

CNN vs QuikSCAT

- Colored arrows: CNN @ 900 m
- Black arrows: QuikSCAT @ 12.5 km
- Area: offshore Norway
- [1] G. Grieco, et al. "Coastal wind retrievals from corrected QuikSCAT Normalized Radar Cross Sections", *Remote Sensing of Environment*, 2024, 308, 114179, https://doi.org/10.1016/j.rse.2024.114179.
- [2] A. Zanchetta, et al., "Wind direction retrieval from Sentinel-1 SAR images using ResNet", *Remote Sensing of Environment*, 2021, 253, 112178, https://doi.org/10.1016/j.rse.2020.112178.

QuikSCAT time: 2008-Nov-24 20:07:13 ASAR time: 2008-Nov-24 20:16:27

IOVWST 2024, Salt Lake City, 30th May

- CNN-derived winds show more variability: what about noise?
- QS vs CNN seems to improve towards the coast
- QS vs ECMWF worsens towards the coast
- CNN vs ECMWF seems better towards the coast (significant?)

- Huge enlargement of the dataset
- triple collocation: CNN QS ECMWF
 - estimate of r_{QS}^2 (scales resolved by CNN and QS)
- quadruple collocation: buoy CNN QS ECMWF
 - estimate of r_{QS}^2
 - estimate of r_{CNN}^2 (scales resolved by *buoy* and *CNN*)

[3] Vogelzang, J.; Stoffelen, A. On the Accuracy and Consistency of Quintuple Collocation Analysis of In Situ, Scatterometer, and NWP Winds. Remote Sens. 2022, 14, 4552. https://doi.org/10.3390/rs14184552

Back-up slides

. . .

Zonal component. CNN₁₅

Meridional component. CNN₁₅

