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sea flux and SST variability associated with atmospheric rivers in the southeast Indian Ocean
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pattern of sea surface temperature (SST) In the southeast Indian Ocean, especially along the
west coast of Australia, Is different from that in the northeast Pacific because of the poleward
flowing Leeuwin Current, which may cause different air-sea fluxes. This study investigates
AR-assoclated air-sea fluxes In the southeast Indian Ocean and their relation with SST
variability based on the analysis of surface winds from Cross-Calibrated Multi-Platform wind
vector analysis (CCMP) version 3 and surface fluxes from the Objectively Analyzed air-sea
Fluxes (OAFIlux) product. The large-scale spatial pattern of latent heat flux (evaporation)

assoclated with ARs 1n the southeast Indian Ocean Is similar to that in the northeast Pacific. A

significant difference Is however found near the coastal area where relatively warm SSTs are
maintained in all seasons. While AR-induced latent heat flux Is close to zero around the west
coast of North America where the equatorward flowing coastal current and upwelling
generate relatively cold SSTs, a significant latent heat flux induced by ARs is evident along
the west coast of Australia due to the relatively warm surface waters. Temporal variations of
coastal air-sea fluxes associated with landfalling ARs are investigated based on the composite
analysis. While the moisture advection reduces the latent heat during landfalling, the
reduction of air humidity with strong winds enhances large evaporative cooling (latent heat
flux) after a few days of the landfalling. A significant SST cooling along the coast Is found
due to the enhanced latent heat flux.
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Figure 1. Left panels: Annual mean SST in the northeast Pacific (left panel) and the
southeast Indian Ocean (right panel) derived from OAFlux. Right panel: AR-associated
evaporation (mm/day: shading) on February 5-7, 2015, winds (m/s) at 10 m (arrows) on
February 6, and total column integrated water vapor (contour) on February 6 in the
northeast Pacific. Adapted from Shinoda et al. (2019).

Climatological SSTs along the west coast
of Australia are 4-5°C warmer than the
west coast of North America at the same
latitude due to the poleward flowing
LLeeuwin Current.

AR-associated evaporation is close to
zero along the west coast of North
America during the landfall because of
the cold SST and high specific humidity.

Because of the unique SST fields caused
by the Leeuwin Current, the evolution of
AR-induced air-sea fluxes could be
different from that in the northeast
Pacific.
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Enhancement of Leeuwin Current caused by landfalling ARs
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Figure 2. Upper left: Total column integrated

water vapor (mm) on September 9, 2015

derived from SSMI data Upper right: Winds at

10 m height on September 9. Lower left: a) The
composite meridional velocity (m/s) along 34°S

on Day — 5. (b) Same s (a) except on Day
0. Adapted from Shinodaet al. (2020).

Strong anomalous surface
winds associated with ARs
generate strong anomalous
coastal currents which largely
enhance poleward flowing
Leeuwin Current.

Since Leeuwin Current carries
warm waters from the tropics,
It may influence SSTs through
poleward heat advection.

However, AR-associated
winds also enhance
evaporative cooling (latent
heat flux).

Warming or cooling during
landfalling AR events?

Data

Purpose of this study
Quantify air-sea flux and SST variability associated with ARs over the southeast Indian Ocean based on
the analysis of global datasets of air-sea fluxes and AR characteristics. In particular, the role of
relatively warm SSTs maintained by the poleward flowing Leeuwin Current is emphasized. Also,
Temporal variations of coastal air-sea fluxes and SSTs associated with landfalling ARs are investigated.

Surface fluxes from the Objectively Analyzed air-sea Fluxes (OAFIlux) product and winds from Cross-
Calibrated Multi-Platform wind vector analysis (CCMP) version 3.
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Figure 3. (a) Total column integrated water vapor (mm) on October 2,

2015 derived from SSMI data. (b) Same as (a) except for September 10.

(¢) Surface evaporation (mm/day: shading), winds (m/s) at 10 m
(arrows), and total column integrated water vapor (contour) on October
1, 2015. (d) Same as (c) except for September 8. (e) Same as (c) except
for October 2. (f) Same as (c) except for September 9.
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Figure 4. (a) Net surface heat flux anomaly and total column
integrated water vapor (contour) on October 1, 2015. The positive
values indicate the downward anomalous heat flux (warming the
ocean). (b) Same as (a) except on September 9. (c) Surface latent
heat flux on October 1, 2015. (d) Same as (c) except on September 9.
(e) Surface shortwave radiation on October 1, 2015. (f) Same as (e)
except on September 9.
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w  Figure 5. (a) The difference of SST (°C: shading) between the periods
» before (September 30, 2015) and after (October 2) the landfalling of

at 10 m (arrows) on October 1, 2015. (b)

Same as (a) except for the SST difference between September 10 and
September 8 and winds on September 9.

ARs are associated with a cyclonic circulation on the western
poleward side of ARs and anti-cyclonic circulation on the
eastern equatorward side of ARs. Strong surface evaporation
. (and thus cooling due to surface latent heat flux) is found on
. the western poleward side of ARs whereas evaporation is

» small on the eastern equatorward side of ARs. Strong surface
- winds are found in a large area of the cyclonic circulation, but
== the specific humidity is also high near the AR center, and thus

on is found on the western poleward

side of AR where winds are still strong but the air is drier
than the AR center. Spatial variations of SST changes are

e heat flux anomalies during these AR
these SST changes are primarily
at fluxes. The latent heat flux mostly

contributes to the net surface heat flux as these fluxes show

the similar spatial pattern.

Composite analysis
Air-sea flux evolution in the open ocean area
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Figure 6. (a) Composite of evaporation (mm/day: shading), TCWV (mm: contour), and
winds at 10 m (m/s: arrows) for the period 2011-2015 over the Southeast Indian Ocean
(70°E-120°E, 15°S-40°S). (b) Same as (a) except for the Northeast Pacific (170°W-120°W,
15°N-40°N). The plot is flipped upside down such that the direction of the North Pole is
downward to compare with (a). (c) Composite of SST tendency (C/day: shading) and winds
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Figure 7. (a) Composite of net surface heat flux anomaly (W/m?2: shading) and
wind at 10 m (m/s: arrows). The positive values indicate the downward

flux anomaly (W/m?). (c) Same as (a) except for shortwave radiation anomaly
(W/m?). (d) Same as (a) except for sensible heat flux anomaly(W/m?).

at 10 m (m/s: arrows) for the period 2011-2015 over the Southeast Indian Ocean (70°E-
120°E, 15°S-40°S). (d) Same as (c) except for the Northeast Pacific (170°W-120°W, 15°N-

40°N). The plot is flipped upside down as in (b).

Evolution along the coast
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Figure 8. (a) Surface latent heat flux (W/m?) and 10 m winds (m/s) along the west coast of
Australia on Day 0. (b) Same as (a) except on Day +3. (c) Same as (a) except for SST.
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Figure 9. Time series of composite SST (°C; blue line with open circle
mark), latent heat flux (W/m?; green line with closed circle mark),
wind speed (m/s; cyan line with open square mark), and specific
humidity (g/kg; red line with closed square mark) averaged over the
area 112°E-116.5°E, 25°S-35°S (a box area in Fig. 8a).

anomalous heat flux (warming the ocean). (b) Same as (a) except for latent heat
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evaporation and SST tendency
are similar in the southeast
Indian Ocean and the
northeast Pacific

A significant latent heat flux induced by
ARs is evident along the west coast of
Australia due to the relatively warm
surface waters maintained by the
poleward flowing Leeuwin Current.
The latent heat flux during the landfall
Is about 130 W/m? (Day -1), and it
increases up to about 200 W/m? (Day
+3) after the landfall, resulting in about
70 W/m? changes. The SST cooling of
about 0.2°C for the 5-day period occurs
after the AR landfall.
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