A Stable Satellite Wind Climate Data Record for Climate Variability Studies

1. INTRODUCTION

- Multiple scatterometers and radiometers processed at Remote Sensing Systems (RSS) were used to develop a Climate Data Record (CDR) of Ocean Vector Winds (OVW, 1999-present) and Ocean Wind Speed (OWS, 1988-present).
- The main objective of the RSS wind CDR is to provide wind timeseries consistent with the climate data records of other air-sea essential climate variable (AS-ECV) derived from RSS radiometers: Atmospheric water vapor, precipitation, sea surface temperature, and cloud liquid water. This set of AS-ECV facilitates studies of climate variability, and investigations on the relationship between changes in the atmospheric circulation and the water cycle, at local and global scales.

Table 1: Past, present, and future scatterometers and radiometers used to create the RSS wind CDR.

Scatterometers	Sensors	Mission life	Ascending Node Time	Rain impact	High wind capability
Ku-band	QuikSCAT	1999-2009	6 am	Significant	Limited
C-band VV-pol	ASCAT-A, -B, -C	2007-present	9:30 pm	At low winds	Limited
C-band cross-pol	<u>SCA</u>	2025-2047	9:30 pm	TBD	Yes
Radiometers					
(Wind Vector)	WindSat COWVR <u>WSF-MWI</u>	2003-2020 2021-present Launch: 2024	6 pm Precessing 6 pm	All-weather TBD TBD	Yes (TC-winds) Limited TBD
(Wind Speed only)	SSMI, SSMIS TMI and GMI AMSR-E/AMSR2 SMAP <u>AMSR3</u>	1988-present 1998-present 2002-present 2015-present Launch: 2024	4 to 10 pm Precessing 1:30 pm 6 am 1:30 pm	Yes, flagged Yes, flagged All-weather All-weather All-weather	Limited Limited Yes (TC-winds) Yes Yes (TC-winds)

2. Cross-Calibration and Stability of RSS CDR

- > The cross-calibration is achieved by using a common Radiative Transfer Model for all radiometers, and calibrating the scatterometer model functions (GMFs) to radiometers winds.
- Non-sun-synchronous radiometers (TMI/GMI) are used for transferring calibration to different times of day [e.g.: QSCAT (6 am/pm) \rightarrow ASCAT(9:30 am/pm)]
- \succ In-situ winds are then used for validation (see section 4.)

Figure 1: Differences between collocated scatterometer and radiometer measurements between 55 N/S on a monthly timescale for satellites used in the RSS Wind CDR.

Lucrezia Ricciardulli, Andrew Manaster, Thomas Meissner, and Carl Mears Remote Sensing Systems, Santa Rosa, CA, USA

An independent validation of each

Remote Sensing Systems www.remss.com

