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A data series correcting for local, persistent NWP stress-equivalent wind biases was produced
in the framework of the World Ocean Circulation (WOC) project, which led to the generation of
the so-called ERA* dataset [35], for the period 2010-2020. The ERA* product aims to correct
persistent errors of ERA5 reanalysis with the use of the varying scatterometer constellation over
time [4, 9].

State of art: ERA* and SC corrections

A data series correcting for local, persistent NWP stress-equivalent wind biases was
produced in the framework of the World Ocean Circulation (WOC) project, which led to
the generation of the so-called ERA* dataset [2], for the period 2010-2020. The ERA*
product aims to correct persistent, local systematic errors of ERA5 reanalysis with
the use of the varying scatterometer constellation. The rationale of the method is
that when the scatterometer-NWP wind differences are accumulated over certain periods
of time and used to correct for NWP local biases, it is possible to overcome sampling
errors and maintain some of the scatterometers most beneficial features, i.e., those
related to relatively small-scale ocean processes, such as wind-SST interaction and
ocean-current relative winds, and furthermore, correct for the other small- and
large-scale NWP parameterization and dynamical errors.
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Default configuration: 
15-day time window

• Best performance in 
the tropics (reduction 
up to 8.9% error
variance) [3]

• Globally 3.8 – 6.7% 
error variance 
reduction, depending 
on the available 
constellation

Global Numerical Weather Prediction (NWP) model sea-surface wind output is commonly
used to force ocean models due to their time and space continuity. However, the
output of the NWP models presents local biases, with one of the most systematic and
longstanding biases in the sea surface wind direction [1]. After the assimilation of
the stress-equivalent winds measured by scatterometers, the European Centre for
Medium-Range Weather Forecasts (ECMWF) model output still presents the mentioned
biases, which need to be corrected since they mostly represent unresolved geophysical
processes by NWP models.

ERA* method limitations:
• It only corrects local biases persistent over several days.
• It is very sensitive to scatterometer sampling, especially over shorter time 

windows.
• It doesn’t directly show NWP error dependence on both atmospheric and ocean state 

conditions.
• It has limitations in operational use: computationally expensive and need to shift 

temporal window (which in turn degrades performance).

Objectives

This work aims at creating a machine learning (ML) model for correcting the ECMWF
ERA5 reanalysis stress-equivalent local wind biases. Several ML setups are
evaluated, which look for the functional relationship between several oceanic and
atmospheric variables and the persistent NWP biases as observed in the
scatterometer-NWP differences. Such variables include ECMWF model parameters, such
as stress-equivalent winds and their derivatives (curl and divergence), atmospheric
stability related parameters, i.e., sea-surface temperature (SST), air temperature
(Ta), relative humidity (rh), surface pressure (sp), as well as SST gradients and
ocean currents.
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Persistent local wind biases globally for the zonal (a) and the meridional (b) components, i.e., 
scatterometer vs NWP differences accumulated over 30 days (February 2019).

The trained model doesn’t require scatterometer observations to produce the 
corrections and:
• It can be used in operational forecasting;
• It enhances reanalysis stress-equivalent wind products for the periods when 

scatterometer observations were not available.

• A data series correcting for local, persistent NWP stress-equivalent wind biases was produced
• in the framework of the World Ocean Circulation (WOC) project, which led to the generation of
• the so-called ERA* dataset [35], for the period 2010-2020. The ERA* product aims to correct
• persistent errors of ERA5 reanalysis with the use of the varying scatterometer constellation over
• time [4, 9].

Datasets and algorithms
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Results and discussion

References:

Model input variables:
• ERA5 stress-equivalent wind components, wind speed and direction;
• ERA5 mean sea-level pressure, air temperature, specific humidity, SST;
• Derivatives of ERA5 stress-equivalent wind components and SST gradients;
• CMEMS global total surface current components.

Targets:
• Differences between ASCAT-A 12.5 km winds and ERA5 stress-equivalent wind 

components.

Validation:
• Resulting model output collocated against independent scatterometer HSCAT-B.

Machine learning algorithms

Extreme Gradient Boosting (XGBoost) Fully-connected feed-forward neural networks 
(sklearn & Tensorflow libraries)

• No normalisation required
• Built-in support for model input 
feature importance

• Library supports various 
hyperparameters to avoid the 
overfitting of the model

• Slow at inference

• Sklearn implementation is very fast but 
not flexible enough for larger datasets

• Tensorflow allows custom pipelines for 
training over larger datasets

• Tensorflow supports implementation of 
custom architectures of neural networks 
and regularization layers such as Dropout

• Faster at inference than gradient boosting 
ensembles
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Several ML models are trained over 02/01/2020 - 06/03/2020 period and validated 
against HSCAT-B.
The results are shown for the test period 10/03/2020 – 29/04/2020.

The obtained preliminary ML models,
which are only trained on a small subset
(5%) of a 70-day dataset, show a
reduction of error variance with respect
to ERA5 U10S which is globally
comparable to the performance of the
ERA* N15 baseline product and of
significantly higher quality in the
extra-Tropics for the 1.5 month period
following the training period. When
validating the models against the
independent HSCAT-B scatterometer, a
5.5% error variance reduction is
achieved globally for the test data set,
and up to 7.66% in the extra-Tropics
[4].

The figure on the right shows the
comparison of the scatterometer-
based corrections (v component)
accumulated over 15 days for ERA*
(top) and the corrections generated
by a feed-forward neural network
(bottom) for the same ERA5
forecast. The presented output is
produced by a feed-forward network
of 4 hidden layers of 256-128-64-32
perceptrons per layer and dropout
regularization.

The ML model is able to reproduce
similar correction patterns to
those in ERA*, but by using only
other model variables as input.

The forecasts corrected by ML
models however are unable to show
increased spatial variance at small
scales, compared to ERA* (not
shown).

The XGBoost library shows similar
performance compared to the implemented
feed-forward neural networks, but is
several times slower during the
inference and thus not suitable for
generation of multiple forecasts over
larger periods of time. However, it has
a built-in feature that allows to
assess the overall importance of the
input features, which can help in
discarding less important inputs and
make the ML model more robust.

Conclusions and future work
In this preliminary work, we demonstrate that it is possible to reduce ERA5 stress-
equivalent wind biases, based only on NWP atmospheric and oceanic output. This work shows
that neural networks are more suitable for the generation of such predictions on larger
temporal scales than decision tree ensembles. At this stage, we only use the simplest
fully-connected feed-forward neural networks and manually calculate the spatial gradients
and derivatives, while future work will include the implementation of the convolutional
neural networks architectures (CNNs) that will learn the filters required to extract the
spatial relationships from the data.
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