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Airborne Lidar Observations

The scales where groups affect H strongly depend on
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are essential for satellite remote
sensing observations.
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applications such as air-sea fluxes and upper-ocean mixing parametrizations. \ .. | | Qp | Figure 6: Spatial and temporal scales where the
Figure 5: Spatial scales for which the effects of wave effects of wave groups on H. are averaged out
. _ goN s MASS \ groups on H_  are averaged out. Estimated using for one-dimensional observations.
Surface wave observations in the meso-to-submesoscale range show caused by 127°W 123°W synthetic wave fields within a 400 m swath.
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: Derived from buoy frequency spectra assuming a cosine-type directional Ap [m]
distribution. Note that we only consider cases with a single wave system.
Takeaway 1: There is between group- and current-induced H gradients.

Both are noticeable in the meso-to-submesoscale range.

E(f,0) = E(f)D(f,6) where D(0) = cos(0 — 6,)**
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Figure 1: Synthetic 15 km x 3 km sea surface elevation for a narrow-banded wave spectrum. H,Z computed over 3 km x 37N Q QO Q 125.4=125.3 155'2 d125 1-125.0-124.9 3.4 - output in the
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group modulation (Fig. 1) results in sharp H, gradients at kilometer-scale. between model and MASS observations in the outlined purple dashed box in (b). 28—
Figure 7: Current-induced refraction emphasized with ray rongitude [deg
. . tracing (white lines). The grid size is 2 km x 2.5 km.
Results: What wave conditions lead to grouppier sea states? 9l )- The g
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