High Resolution L-band Wind Speeds from the Global Lband Observatory for Water **Studies (GLOWS)**

David Long, Rajat Bindlish, Jeff Piepmeier, Giovanni De Amici, Mark Bailey

IOVWST Meeting 2023 Virtual Poster

GLOWS Mission Objectives

Soil Moisture Active Passive (SMAP) data continuity

- L-band polarimetric radiometer and radar
- SMAP-level accuracy to continue data (same resolution/swath/accuracy)
- Radar provides <5 km resolution wind speed retrieval
- Lost cost mission achieved by
 - Small size: stow within a rideshare volume
 - Use meta-material lens as a refractor
 - Use multi-element patch array feed
 - Update radiometer to reduce volume and improve performance
 - Leverage SOA commercial radar technologies
- Funded by NASA IIP

SMAP Science Continuity

 Soil Moisture High-resolution and frequent-revisit Understand processes that link the terrestrial water, energy and carbon cycles 	 Ocean Surface Salinity Ocean circulation governed by salinity + temperature Global water cycle: Salinity reflects balance between 	 Ocean Surface Winds L-band not affected by rain or clouds L-band does not saturate with wind 	 Vegetation Biomass Radar observations provide all-weather vibiomass Microwaves observations saturate at hig Food security and agriculture Quantify net carbon flux in boreal landsc
 Estimate global water and energy fluxes at the land surface Enhance weather, flood and drought prediction 	 precipitation and evaporation Freshening due to ice melt in Arctic Balance between Atlantic and Pacific Changes in coastal salinity 	 speed Effective in intense tropical cyclones 	• Sea ice thickness up to 0.5 m
	due to increased run off	(Unfortunately, SMAP radar failed shortly after launch)	 Complementary observations to altimet ice Summer melt of sea ice and ice sheets freshwater lenses
Soil Moisture and SSS from SMAP Ocean Winds using L-hand			150°E 120°E

1013LUIE anu 333 moni 311*F*

Ocean winus using L-Danc

Comparing GLOWS and SMAP

GLOWS Design

- GLOWS similar to SMAP:
- Four **radiometer** channels
 - H, V, 3rd and 4th Stokes @ 1.41 GHz
 - ~15 ms integration interval with 24/80 MHz BW
 - ~40 km resolution
 - 1000 km wide swath
 - 6 m membrane lens antenna vs reflector
- Quad Pol rotating SAR
 - HH, VV, HV/VH @ H 1.26, V 1.29 GHz
 - PRF=2.8 kHz, Tp=15 us w/1 MHz BW chirp
 - Peak Xmit power 500 W
 - 250 m SAR resolution averaged to 1 & 5 km
 - 1200 km wide swath
- Orbit
 - 685 km, 8-day repeat orbit

GLOWS

GLOWS Instrument Development Status

- Lens RF Design
 - Membrane L-band waveguide transmissivity testing
 - Lens design and model validation
 - -2 m x 4 m full scale antenna slice
- Feed Design
 - 12 element test completed, studying 16 element
 - 1/6 scale testing complete
- Lens Structural Design
 - 6 m prototype deployment demonstration successful
 - 6 m positional deployment stability test complete
 - Satellite packaging study completed Systems fits in EPSA Grande envelope
 - Completed buckling test of slit tube struts to validate FEA subassembly model
- SMAP Diplexer Upgrade

vegetation her biomass apes

ter - thin sea can cause

