

Airborne experiment of the L-band scatterometer for the Chinese Salinity Observation Mission

LIN Wenming^{1,2}, CHEN Zihao¹, ZHU Di³, YUN Risheng³

wenminglin@nuist.edu.cn

¹ School of Marine Sciences, Nanjing University of Information Science and Technology
 ² Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources
 ³ National Space Science Center, CAS

前京信息スジェク Nanjing University of Information Science & Technology

CONTENTS

Data Preprocessing Methods

Preprocessing Results

2

3

Conclusions

1. Overview of the Experiment

1.1 Experimental Background

Before the Salinity Satellite is deployed for space applications, it is necessary to carry out airborne experiment to effectively validate the instrument detection theory, data preprocessing algorithms, and salinity inversion algorithms.

- Satellite Payloads: an synthetic aperture radiometer and active/passive detection instruments
- Available Physical Parameters: sea surface salinity, sea surface roughness, and sea surface temperature

Airborne flight test platform Scatterometer antenna array

1. Overview of the Experiment

1.2 Experimental Overview

- Experimental area: Sea area of Yantai City, Shandong Province, China
- Experimental period: 2023.07.12~08.14
- Flight altitude: 3 km
- Flight speed: 200 km/h
- Flight sorties: 8 sorties in total

Flight tracks of of two typical sorties

- Flight mission has carried out around offshore platform during 1st~4th sorties. (Red line in Fig.)
- 5th~8th sorties involve simultaneous observations following the movement of the vessel.
 (Green line in Fig.)

1.3 Airborne Scatterometer System

List of the main system parameters

Parameters	Values		
Frequency	1.25 GHz		
Pulse duration	8 µs		
Bandwidth of transmitted signal	tted 2 MHz		
Pulse repetition frequency	6.67 kHz		
Forward looking beam elevation angle	38.4°		
Polarization	HH,VV,HV,VH		
Number of array elements	5		
Number of beam positions	11		
Peak power	100 W		
Noise figure	3.5 dB		

Schematic diagram of the airborne scatterometer system

前京信息スジェク Nanjing University of Information Science & Technology

CONTENTS

Data Preprocessing Methods

Preprocessing Results

2

3

Conclusions

2.1 Technological Route

Data preprocessing flowchart

2. Data Preprocessing Methods

2.2 Key steps in L1A processing

• Signal Dechirping

Mix the received signal with the reference signal, and perform amplitude-phase correction and doppler compensation during the process.

$$\begin{cases} S_{\text{ref}}^{mn} = \Delta A_{\text{r}}^{m} \Box A_{\text{ref}} \operatorname{Trect}\left(\frac{t - \tau_{0}^{j}}{T_{\text{ref}}^{j}}\right) \\ \operatorname{Cexp}\left[j2\pi\left(f_{\text{ref}}\left(t - \tau_{0}^{n}\right) + \frac{1}{2}\mu(t - \tau_{0}^{n})^{2}\right) + j\phi_{\text{ref}} + (j\phi_{\text{r}}^{mn} + j\Delta\phi_{\text{r}}^{m}\right] \\ S_{\text{dechp}}^{mn}\left(t\right) = S_{\text{IF}}^{mn}\left(t\right) \Box S_{\text{ref}}^{mn}\left(t\right), \quad m = 1, 2, \dots, 5; \quad n = 1, 2, \dots, 11 \end{cases}$$

• Digital Beam Forming (DBF)

Amplitude-phase-corrected signals of each channel are summed up.

$$S_{\rm r}^{n}\left(t\right) = \sum_{m=1}^{5} S_{\rm dechp}^{mn}\left(t\right)$$

2.3 Key steps in L1B processing

• Geometric Location

Locate the center of the ground footprint and its slices by applying coordinate transformation relationships.

• X-factor Computation

$$X^{q} = \frac{P_{t}G_{p}^{2}G_{r}\lambda^{2}}{(4\pi)^{3}L}\sum_{i\in F}\left\{\left(\frac{\Delta A_{i}g_{i}^{2}}{r_{i}^{4}}\right)\sum_{k=k_{s}}^{k_{e}}\left[\frac{\sin^{2}\left[\pi N_{i}\left(f_{b,i}T_{s}-\frac{k}{N}\right)\right]}{\sin^{2}\left[\pi\left(f_{b,i}T_{s}-\frac{k}{N}\right)\right]}\right]\right\}$$

• σ^0 Estimation

$$\sigma^{0} = K_{s} \frac{E_{s,q}}{N \cdot E_{c} \cdot \left(X^{q} / P_{t}\right)}$$

 $E_{s+n,q} \Rightarrow$ The *q*th slice backscattering total energy $E_{n,q} \Rightarrow$ External thermal noise (radiometer) $E_c \Rightarrow$ Internal calibration signal

2.4 Key steps in L1C processing

Flow chart of the NWP ocean calibration

Look Up Table (L1B to L1C):

NOC_coefficient_HH

NOC_coefficient_VH

前京信息スジェク Nanjing University of Information Science & Technology

CONTENTS

Data Preprocessing Methods

Conclusions

3.1 L1A processing results

5 channels DBF signal

Filtered & downsampled signal

2

3.2 L1B processing results

After geometric localization and X-factor calculation, each footprint can be further divided into five slices.

Schematic diagram of antenna footprint and slice division

3.2 L1B processing results

14

3. Preprocessing Results

3.2 L1B processing results

3.3 L1C processing results

Setting up backscattering coefficient flag for data QC:

- a) Invalid value;
- b) Internal noise exceeds the threshold;
- c) Measured values at aircraft turns (Roll>±3°);
- d) Incidence angle out of range $(30^{\circ} \sim 60^{\circ})$;
- e) data quality (MLE)

Data filtering situation

	Num of $\sigma_{ m vv}^{ m 0}$	Num of $\sigma_{_{ m HH}}^{_0}$	Total num of $\sigma^{\scriptscriptstyle 0}$	
	(filtered)	(filtered)	(unfiltered)	
2 nd flight	405224	1040655	4108625	
3 rd flight	240414	611166	2735530	
4 th flight	387446	986203	3932290	
5 th flight	460536	1160176	3546600	
6 th flight	581543	1464408	4675315	
7 th flight	297275	748170	2550620	

南京信息工程大学 Nanjing University of Information Science & Technology

3.3 L1C processing results

17

The distribution of measured and simulated values is essentially identical.

3.4 Performance analysis

• Spatial resolution

Ele-dimension footprint size : ≈ 1.38 km Azi-dimension footprint size : ≈ 0.50 km

Slice width: ≈ 0.40 km

3.4 Performance analysis

Backscatter measurement accuracy

Comparison of measured and simulated values

	VV-pol		HH-pol			
	сс	Bias(dB)	std(dB)	сс	bias(dB)	std(dB)
2 nd flight	0.64	1.87	1.90	0.81	1.42	2.53
3 rd flight	0.74	0.57	1.99	0.85	0.26	2.43
4 th flight	0.68	1.54	1.76	0.81	1.07	2.41
5 th flight	0.69	-0.01	1.53	0.79	0.23	2.34
6 th flight	0.65	-0.60	2.06	0.85	-1.32	2.43
7 th flight	0.71	0.31	1.43	0.82	0.05	2.32

前京信息スジェク Nanjing University of Information Science & Technology

CONTENTS

Overview of the Experiment

2

Data Preprocessing Methods

Preprocessing Results

Conclusions

- 1. A salinity satellite scatterometer flight experiment data preprocessing system has been developed, including L1A, L1B and L1C data processing.
- 2. The spatial distribution of backscatter coefficients clearly reveals the difference between the ocean and land, providing a validation of the data accuracy.
- 3. A preliminary validation of the results was carried out, which showed that the measured values were close to the simulated.

- 1. Due to the presence of more interference sources during airborne measurements, further analysis is required to eliminate abnormal signals and improve data quality.
- 2. The currently used GMF is based on scatterometer data from the Aquarius satellite, which only provides measurements at three incidence angles. It would be beneficial to explore more suitable data verification methods.

Thank you for your attention