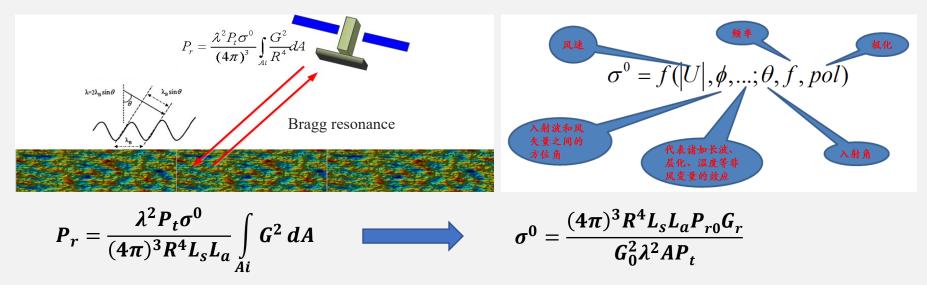


An follow-on for the scatterometer onboard the Chinese HY-2 satellites series

China Academy of Space Technology, Xi'an

Content

1

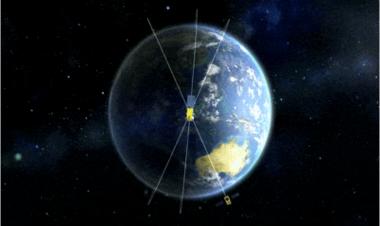

3

2 On-orbit Performance of HSCAT

Follow-on scatterometer (HSCAT-F)

□ The space-borne scatterometer is the main approach to measure ocean wind vector globally.

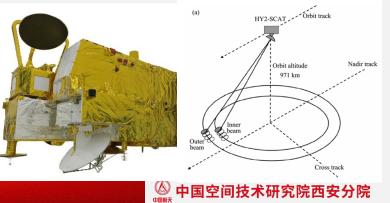
The ocean surface vector winds can be inferred from the measured Normalized Radar Cross Section (NRCS) signal strength (σ^0) by using the Geophysical Model (CMOD) Function (GMF).



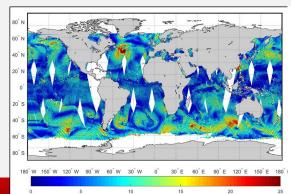
- -----
- HY-2A is China's first satellite for exploring the oceanic dynamic environment, which was launched on August, 2011.
- □ HY-2B was launched on October, 2018. (sun-synchronous orbit with 99.34° inclination)
- □ HY-2C satellite was launched on September, 2020. (nonsun-synchronous orbit with 66° inclination)
- □ HY-2D satellite was launched on May, 2021. (nonsun-synchronous orbit with 66° inclination)
- Scatterometer (HSCAT) is the main payload.

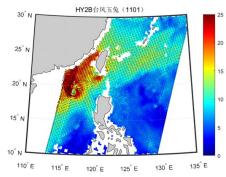
The second second

- □ Two batches of marine dynamic environment satellite constellations.
- □ The first constellation: HY-2B/2C/2D, May, 2021.
- □ The second constellation: HY-2E/2F/2G.
- □ The scatterometer to be carried on the HY-2E satellite is identical to the previous scatterometers.
- The scatterometer to be carried on the HY 2F satellite has a great improvement.
- HY-2E will be launched on 2025, HY-2F will be launched on 2026.


On-orbit Performance of HSCAT

On-orbit Performance of HSCAT

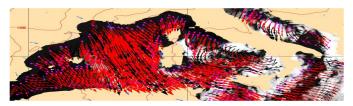

- HSCAT-B/C/D is a Ku-band real aperture radar system with conically scanning "pencil-beams".
- □ The parabolic dish antenna (1m) and the electronic systems rotate together.
- □ Two offset feeds to produce the "inner" and "outer" beams.
- □ The linear frequency modulation (LFM) chirp signal.
- □ The noise-only energy is integrated over the same period as the signal+noise energy.
- Radio internal calibration method.
- Doppler compensation frequency.


Parameter	HSCAT		
Frequency	13.256 GHz		
Polarization mode	HH+VV		
Spatial resolution	25km		
Swath width	1350 km(HH)/1750 km(VV)		
Incidence angles	41°(HH) / 48° (VV)		
Antenna	1m, Rotating pencil beam		
PRF	181Hz		
Peak power	120W		

On-orbit Performance of HSCAT

- HSCAT data is provided by Chinese National Satellite Ocean Application Service.
- □ The performance of HSCAT has been validated by several researches.
- □ The validation results indicate that the scatterometers onboard HY-2 satellites show quite good quality.
- Direct use; assimilation into numerical weather prediction (NWP) models.

6156


Technical Note Evaluation of Sea Surface Wind Products from Scatterometer Onboard the Chinese HY-2D Satellite Sheng Yang ^{1,2}, Lu Zhang ^{3,*}, Mingsen Lin ^{1,2}, Juhong Zou ^{1,2}, Bo Mu ^{1,2} and Hailong Peng ^{1,2}

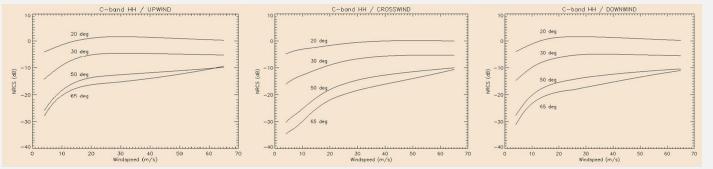
IEEE IOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING. VOL. 14: 2021

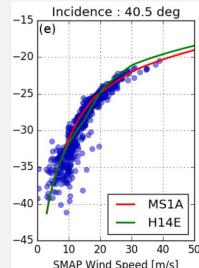
Scatterometer Sea Surface Wind Product Validation for HY-2C

Zhixiong Wang¹, Member, IEEE, Juhong Zou¹, Ad Stoffelen¹, Senior Member, IEEE, Wenming Lin¹, Senior Member, IEEE, Anton Verhoef¹, Xiuzhong Li¹, Yijun He¹, Member, IEEE, Youguang Zhang, and Mingsen Lin¹

International Research and Development Collaboration results for the Global Application of the Chinese HY-2B Scatterometer

Ad Stoffelen, Anton Verhoef, Jeroen Verspeek, Jur Vogelzang, KNMI, the Netherlands Marcos Portabella, Ana Trindade, ICM-CSIC, Spain Zhkiong Wang, NUIST, China (vlsiting scientist at KNMI) Giovanna De Chira, ECMMF, United Kingdom Christophe Payan, Anne-Lise Dhomps, Météo France, France Alexander Cress, DWD, Germany James Cotton, Met Office, United Kingdom Luca Brocca, CNR-IRPI, Italy David Long, BYU, USA Isabel Monteiro, IPMA, Portugal Abderrahim Bentamy, IFREMER, France


山田航3


- A main limitation of the current Ku-band scatterometer HSCAT is the low sensitivity of co-polarized signal to severe wind speeds (>25m/s).
- □ The dynamic wind range of HSCAT: 2-24m/s.
- This reduces the usefulness of the HSCAT wind products in case of severe wind situations like Hurricanes and Typhoons.

- □ In general, the ocean HH-polarized backscatter is weaker than the VV one but more sensitive to high wind speeds at large incidence angles (above 40°).
- The C-band cross-polarized backscatter signal shows a rather simple relationship to the wind speed with useful sensitivity in the severe wind regime.

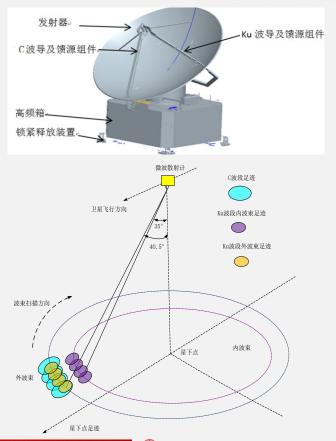
Fernandez D E, Carswell J R, Frasier S, et al. Dual-polarized C-and Ku-band ocean backscatter response to hurricaneforce winds[J]. Journal of Geophysical Research: Oceans, 2006, 111(C8). Rivas M B, Stoffelen A, van Zadelhoff G J. The benefit of HH and VV polarizations in retrieving extreme wind speeds for an ASCAT-type scatterometer[J]. IEEE transactions on geoscience and remote sensing, 2013, 52(7): 4273-4280.

Mouche A A, Chapron B, Zhang B, et al. Combined co-and cross-polarized SAR measurements under extreme wind conditions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 6746-6755.

- The scatterometer (HSCAT-F) to be carried on HY-2F satellite:
- □ A direct heritage from the successful HSCAT onboard HY-2B/C/D satellites
- □ Larger dynamic wind range: 2-50m/s
- □ Higher spatial resolution: 12.5km (Ku), 25km(C)

Approach:

- Adding C-band co- and cross-polarized measurements.
- □ Large antenna: ~1.8m.


Application:

soil moisture retrieval, vegetation determination, water and land distinction, freeze/thaw detection, sea ice monitoring

Key parameters of HSCAT-F:

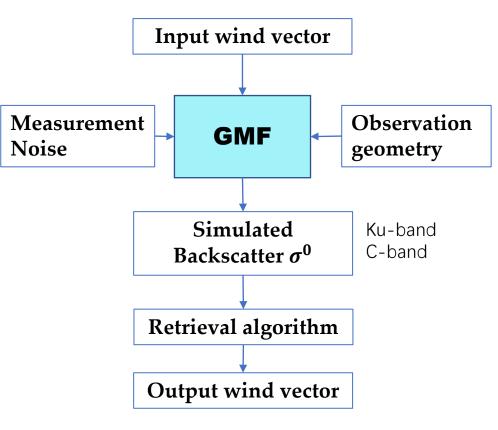
Parameter	Value		
Frequency	C, Ku		
Swath width	1350km(inner) 1750km (outer)		
Polarization	HH、VV、HV、VH		
Wind range	2m/s~50m/s		
Spatial resolution	12.5km(Ku) / 25km (C)		
PRF	292Hz(Ku), 146Hz(C)		
Wind speed RMS	1.5m/s or 7.5%		
Wind direction RMS	<20°		
Antenna size	1.8m		
Peak power	120W(Ku) / 200W(C)		
Weight	165 kg		

A Lot Hall & B. R. Law

Radiometric noise (Kp) C-band cross polarization

5m/s: ~0.34dB
5m/s: ~0.23dB
$$Kp = \sqrt{\frac{1}{N_s} \left(1 + \frac{1}{SNR}\right)^2}$$

GMF:

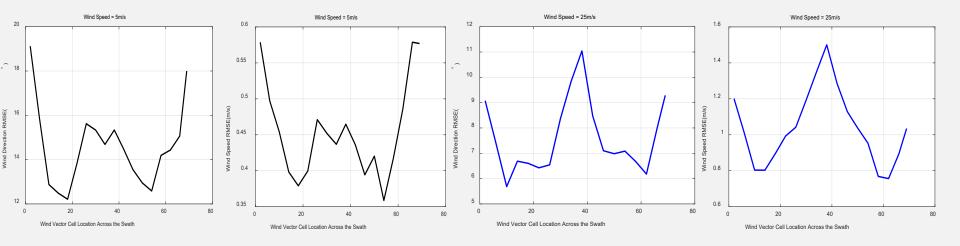

2-24m/s:

NSCAT-4 for Ku-band,

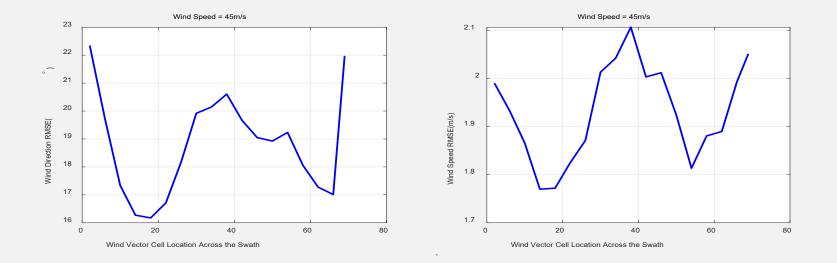
CMOD7 for C-band VV polarization,

CMOD5-HH for C-band HH polarization. >25 m/s:

IWRAP-GMF for Ku-band co-polarization CMOD5.H for C-band co-polarization, MS1A for C-band cross-polarization.



The second second


Simulation result

RMS	5m/s	10m/s	25m/s	45
Ws(m/s)	0.49	0.58	1.09	1.94
Wdir(deg)	14.9	6.4	8.1	19.6

Simulation results indicates that HSCAT-F can provide good-quality ocean winds products for low, moderate, high and extreme wind conditions.

