The Quality Control Indicator \textit{Joss} on Ku-band Wind Scatterometry for Sea Ice Applications with Reference to C-band, Passive Measurements and Precipitations

\textbf{Xingou Xu} 1, Ad Stoffelen 2 \textsuperscript{\footnote{ad.stoffelen@knmi.nl}}

1 National Space Science Center, Chinese Academy of Sciences
2 Royal Netherlands Meteorological Institute (KNMI)

IOVWST 2023. Nanjing, Jiangsu, China. 1st, Dec.
The Scatterometer Ice GMFs

- The Ice GMFs are obtained from pure ice surfaces, with references to wind GMF in speed.

- Sea ice backscatter shows no directional preference in azimuth, tightly conforming to a 1-D straight-line model that features sea ice brightness (or proxy sea ice age) as its only independent variable

- The function does not change with time or geographical location

(Belmonte et al., 2012; R. Belmonte, A. Stoffelen et. al, 2011)
Identification of sea ice in the ocean from wind scatterometers

MLE: Weighted Euclidian distance to the wind cone or sea ice line

\[
MLE = \frac{1}{N} \sum_{i}^{N} \frac{(\sigma_{i}^{0} - \sigma_{sim,i})^2}{(K_{pi} \cdot \sigma_{i})^2}
\]

\(\sigma_{i}^{0}\) is the \(i^{th}\) NRCS of the \(N\) NRCSs within a Wind Vector Cell (WVC),

\(K_{pi}\) represents the variance of \(\sigma_{i}^{0}\) in it.

\(\sigma_{sim,i}\) is from a wind or sea ice GMF using observing geometry and local wind vector or sea ice information.

MLE quantifies NRCS deviations from wind GMF, and are used for Bayesian inference of sea ice together with ice GMF

(Marcos Portabella and Ad Stoffelen, 2006; Belmonte and Stoffelen, 2011)
The indicator J_{oss} measures heterogeneity of the WVC.

2DVAR is used for ambiguity removal on the basis of a spatial wind field analysis J_{oss}, the local difference in speed of the selected wind ambiguity and the analysis wind speed, naturally locates and quantifies local disturbances.

$$J_{oss} = f - f_s$$

f_s is the 2DVAR analysis wind speed at a WVC, f is the local WVC-selected wind speed.

Wind component spectra obtained from all ASCAT-12.5 data of January 2009. A variational data assimilation scheme based on statistical interpolation acts as a low-pass filter. (Jur Vogelzang, Ad Stoffelen, 2011)
Method:

• The differences of NRCS with wind GMF represented by MLE in different frequencies
• The heterogeneity of the averaged scene represented by J_{oss}
• Different features of MLE and J_{oss} for ice screening and smaller scale iceberg detection with references from different sources
Data descriptions

Scatterometer data: Collocation of Ku-band and C-band Scatterometer from OSCAT-2, ASCAT-A and ASCAT-B (from 2016-2019)

Other information applied:
• Sea Ice Concentration: AMSR-E
• Iceberg information: the Sentinel-1.
• Surface Rain Rates: GPM final run

Illustration of area-weight collocating for SIC and rain rates, a circle is used instead of the blue WVC (X. Xu et al., 2020)
MLE, J_{oss}, and SIC from collocated Ku and C-band observations

- C band MLE has been well applied for sea ice identification
- Verification of ice screening for Ku band J_{oss} and compared with C band MLE

QC- all:

Sorted by Joss: (a) SIC (b) MLE Ku (c) MLE C (d) Rain rate (e) Density

QC- II (Ku-rejection, C acceptance):

Sorted by Joss: (a) SIC (b) MLE Ku (c) MLE C (d) Rain rate (e) Density
MLE, J_{oss}, and SIC from Ku band observations

HY-2B Ku band J_{oss}

QC-all:

Sorted by Joss: (a) SIC (b) MLE Ku (c) Rain rate (d) Density

QC-rejection:

Sorted by Joss: (a) SIC (b) MLE Ku (c) Rain rate (d) Density
Summary for MLE, J_{oss}, and SIC from collocated Ku and C-band observations

- Low to medium wind speed, effects of SIC similar with rains, in higher wind speeds SIC affect more often for high latitude.
- MLE good in identifying rains and SIC, both C band and Ku band MLE more sensitive to SIC than rains, while C MLE is more likely to be linked with sea ice.
- The indicator J_{oss} companionary to MLE flags.
Ku band scatterometer MLE and Joss v.s. SAR iceberg

• A case

-The potential large sic set is obtained under the condition (white line):

\[J_{\text{oss}} \leq 0.33 f^{-5} \]

-A specific iceberg case between Greenland and Canada:

Low Joss values corresponds to high iceberg concentration (IBC) and high SIC
Ku band scatterometer MLE and Joss v.s. SAR iceberg

- **Statistics**

SIC and IBC are different in different observations and not in good correlation.
Statistics

Sorted by Joss: (a) IBC
(b) SIC
(c) MLE
(d) Rain rate

Sorted by Joss: (a) IBC
(b) SIC
(c) MLE
(d) Rain rate

IBC >=15%

Ku band scatterometer MLE and Joss v.s. SAR iceberg

IOVWST 2023
Ku band scatterometer MLE and Joss v.s. SAR iceberg

• **Statistics (averaged view)**

Sorted by Joss: (a) IBC (b) SIC (c) MLE

(d) Rain rate
(e) Density

IBC >=15% curve corresponding to large density
Conclusions and Discussions

• Conclusions:
 - Bayesian scatterometer sea ice screening is operational
 - In the collocation set, the ice screening ability of J_{oss} in addition to MLE has been confirmed
 - Combined C and Ku band is favorable in discriminating rain and sea ice effects
 - Iceberg is in smaller scales different from SIC. Though iceberg induce larger signal return, they require better spatial resolution in measurement, and better resolved by MLE.
 - Inclusion of precipitation probability could improve ice Bayesian.

• Further Research:
 - NRCS features due to mixed ice, icebergs and open ocean

(X. Xu and A. Stoffelen, 2003)
Key References

Thanks!