INTERNATIONAL OCEAN VECTOR WINDS SCIENCE TEAM meeting

30 November – 1 December 2023, Nanjing (China)

Retrieving Wind Vectors from Buoy Wave Spectra using Deep Learning

Haoyu Jiang (蒋浩宇)

College of Marine Science and Technology, China University of Geosciences <u>Haoyujiang@cug.edu.cn</u>

Introduction

Both sea surface wind & wave are import parameters of ocean dynamics

- Impacting almost all human activities in the ocean
- Disaster prevention Tropical cyclone, huge waves
- Closely related to many ocean dynamic processes

The observation of sea surface wind & wave is useful for both scientific research & engineering practice.

The current wind/wave observation technology can be roughly classified as :

Remote Sensing & In-situ

Wind speed on 24-Jul-2007 00:00

Introduction Remote Sensing Observation of Ocean Wind/Wave

Remote Sensing of Sea Surface Wind

Sensor	Advantage	Disadvantage
Scatterometer	Wind Swath, Wind Vector, Good Accuracy	Saturation in High Wind, Low Resolution
Altimeter	Simultaneous Wind & Wave Information	Narrow Swath, No Wind Direction
SAR	Wind Vector, High Resolution, High Wind-Usable	Low Accuracy, Unstable Data Source
Radiometer	Wind Swath, ,Good Accuracy, High Wind-Usable	No Wind Direction (exp. WindSAT), Low Resolution

Scatterometer/radiometer are widely used (operational) in NWP assimilation/verification.

Remote Sensing of Waves (Wind-generated Surface Gravity Waves)

Sensor	Advantage	Disadvantage			
Altimeter	High Accuracy, Simultaneous Wind & Wave	Narrow Swath, Only SWH			
SAR	Simultaneous Wind & Wave, Swell Spectrum	Not Operational, Relatively Low Accuracy			
SWIM	Simultaneous Wind & Wave (Directional Spectrum)	Accuracy of Wave Spectrum to be Evaluated			

Altimeter SWH are widely used in wave model assimilation/verification.

- > RS cannot obtain good-quality directional wave spectra at this stage
- RS cannot continuously observe a fix point
- > Low resolution \rightarrow Low accuracy at coastal areas

In-situ method is still irreplaceable for wind/wave observation

- Continuous observations at selected points
- > More parameters with **better** accuracy
- > RS data is often evaluated/validated against them

In-situ observation of wind/wave are often made by meteorological buoys with both wind and wave sensors.

Problem of large meteorological Buoy: EXPENSIVE

- Meteorological Platform + Mooring
 - \rightarrow High manufacturing cost
 - \rightarrow Large buoy size
 - → High deployment/maintenance cost (needing a dedicated ship/voyage)

Large buoys are sparsely distributed even near the coasts of developed countries

 A contradiction of stability requirement between wave and wind observations:
For wind observation: Buoys need to be stable (otherwise, the measurement height will vary)
For wave observations: Buoys need to be unstable (to respond to the wave motion)

Wave measurements from small wave drifters

- Low cost | Light | User friendly | Quick deployment
- > Can be deployed by all types of ships (even small boats)
- Can be deployed "in pass"
- Can well respond waves, but difficult to setup a anemometer

Proxy wind observation from waves

Wind-wave relationship in the equilibrium range can be used to estimate wind speed and direction (Voermans et al. 2020 JGR)

Wind Speed RMSE: ~2.5 m/s Wind Direction RMSE: ~25° (>7 m/s)

Compared to satellite scatterometer: Wind Speed RMSE: 1~1.5 m/s Wind Direction RMSE: 15°~18° 13°~15° (>7m/s)

Can not be used in operational observations BUT GOOD IDEA!

JGR Oceans

RESEARCH ARTICLE 10.1029/2019JC015717

Key Points: • Wind properties are estimated based on a f⁻⁴ spectral dependence in the equilibrium range • Wind speed and direction can be estimated based on wave

Estimating Wind Speed and Direction Using Wave Spectra

J. J. Voermans¹, P. B. Smit², T. T. Janssen², and A. V. Babanin^{1,3}

¹Department of Infrastructure Engineering, University of Melbourne, Melbourne, Victoria, Australia, ²Sofar Ocean Technologies, San Francisco, CA, USA, ³Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

$$E(f) = E_0 f^{-4}$$
 with $E_0 = \frac{4\beta I u_* g}{(2\pi)^3} f > 1.3 f_p$

- Some potential error sources:

- Same weight for different frequencies 3.
- Some energy maybe in saturation range \rightarrow A better way to find equilibrium range?
- Wave spread is assumed to be constant \rightarrow A changeable wave spread coefficient?
 - \rightarrow Considering different frequencies separately?

OR

Digging the relationship between wind and wave from the observational data?

Regression problem: Wave spectra $\rightarrow U / \theta$ **Multivariate regression:**

A new opportunity from machine learning

Data Model inputs and outputs

> Simultaneous observations of wind vector & wave spectra

~100 NDBC buoys, 5 years (2014-2018) ~1,600,000 records

Model INPUT: Wave spectra

Buoy cannot measure directional spectra directly, but can measure "First-5" $E/\alpha_1/\alpha_2/r_1/r_2$ of 0.02–0.485 Hz (47 frequency bands)

Model OUTPUT: Wind speed/direction

3-5m wind \rightarrow 10m (Log profile)

Buoy U10 is widely used in the Cal/Val of remote sensing data

Method Modelling

Building the model "violently"

Loss_{U10} = RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - x_i)^2}$$
,

 $Loss_{Dir} =$

$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} \left[(\sin(y_i) - \sin(x_i))^2 + (\cos(y_i) - \cos(x_i))^2 \right]}.$$

Input:			Hidden:		Division:	
47 frequencies×5 parameters			3 layers		Training 50%	
235 neurons			×64 neurons		Testing 50%	
Activation:	Optimizer:	B	Batch:	Ea	rly	y
ReLU	Adam	2	048	Ste	op	oping

> Results for the "violent" model

 U_{10} RMSE: ~2.5 m/s (Voermans et al. 2020) ~1.3 m/s (this study) 1~1.5 m/s (scatterometer) θ RMSE (U₁₀>7m/s) ~25° (Voermans et al. 2020) ~16° (this study) 13~15° (scatterometer)

Bad wind direction for U₁₀<5m/s High winds are underestimated

A good result applicable for engineering application

Delay in the signal

- > Even for equilibrium range, the waves need time to "fully" respond to wind
- A shifting correlation is computed between model output and observed wind to find the "delay" response of waves.

- > Different delay for different wind & wave spectra (related to the wave growth)
- Statistically, DNN-retrieved winds are the best correlated to observed winds 30~60 min before

 $\begin{array}{c} U_{10} \text{ RMSE:} \\ \sim 2.5 \text{ m/s} \quad (\text{Voermans et al. 2020}) \\ \sim 1.1 \text{ m/s} \quad (\text{this study}) \\ 1 \sim 1.5 \text{ m/s} \quad (\text{scatterometer}) \\ \theta \text{ RMSE} \quad (U_{10} > 7 \text{m/s}) \\ \sim 25^{\circ} \quad (\text{Voermans et al. 2020}) \\ \sim 14^{\circ} \quad (\text{this study}) \\ 13 \sim 15^{\circ} \quad (\text{scattrometer}) \end{array}$

Still:

Bad wind direction for U₁₀<5m/s High winds are underestimated

If a 30-min data delay is acceptable for an application, a better result can be obtained.

Error increases with wind speed

Case study

Even for a platform with both wind/wave measurement, this model can be used to monitor the quality of wind/wave data.

> Ablation test

Removed Variable	E	α_1	α_2	<i>r</i> ₁	<i>r</i> ₂
RMSE (U10, m/s)	3.75	1.17	1.14	1.47	1.19
RMSE (θ, °)	17.3	111.9	16.2	14.3	14.4

$$E(f) = E_0 f^{-4}$$
 with $E_0 = \frac{4\beta I u_* g}{(2\pi)^3} f > 1.3 f_p$

Ablation frequencies

Summary

- > A DNN-based model to retrieve wind speed & direction from wave spectra
- > The accuracy of the model is good (close to the level of scatterometer) U_{10} RMSE: ~1.3 m/s (realtime) ~1.1 m/s (30min delay) θ RMSE(U_{10} >7m/s): ~16° (realtime) ~14° (30min delay)
- > The model can also be used for the **QC of wave-wind joint observations**

Future application & improvement

- > The model can help wind-sea-swell partition when wind info is not available
- The model can work better for wave drifters: currents have less impact on the dispersion relation in the drifter coordinate

Thank you!Haoyujiang@cug.edu.cnWX/QQ: 409861079

H. Jiang*, Wind Speed and Direction Estimation from Wave Spectra using Deep Learning, *Atmospheric Measurement Techniques*, 2022 W. Meng, S. Li, X. Wang, H. Jiang*, Wind-sea and Swell Separation of 1D Wave Spectrum by Deep Learning, *Ocean Engineering*, 2023