

FY-3E/WindRAD instrument status and calibration accuracy evaluation

Mei Yuan, Jian Shang, Honggang Yin, Fangli Dou, Zhixiong Wang, Peng Zhang NSMC, CMA

2023-12-01

- 1. WindRAD introduction
- 2. Instrument status
- 3. L1 Data Validation
- 4. Summary

PART 01

WindRAD introduction

Photometer

GNSS Radio Occultation Sounder-II

FY-3E satellite

Wind Radar

Microwave Humidity Sounder-II

Microwave Temperature Sounder-III

Triple-angle lonospheric

Wind Radar (WindRAD) for Chinese FY-3E satellite

- The first active remote sensing instrument of Fengyun series satellite of China.
- dual-frequency: C & Ku band, both with VV & HH polarizations microwave scatterometer
- ◆advanced rotating fan-beam
- Detecting global sea surface wind vector, including wind speed and wind direction.

1. WindRAD introduction

Main performance specifications

Spectrum specifications

parameter	metric			
Frequency	5.4 GHz (C band)	13.256 GHz (Ku band)		
Polarization	VV、HH	VV、HH		

Observing geometric specifications

naramatar	metric		
	C band	Ku band	
(azimuth×range) Spatial resolution	25 ×0.5km	10 ×0.5km	
Swath	> 120)0km	
Scanning mode	360° conical scanning		

Radiometric specifications

noromotor	metr	ic
	C band	Ku band
Minimum detectable wind speed	3 m/s(-26.2dB)	3 m/s(-30.8dB)
Radiometric resolution	0.5dB(wind sp 1.0dB(wind sp	beed $\geq 5 \text{ m/s}$) eed = 3 m/s)
Radiometric accuracy	≤ 0.6	dB

PART 02

Instrument status

FY-3E/WindRAD (Wind Radar)

WindRAD has been turned on and conducted the global observation since July 9th, 2021.

Its status is quite stable. Except for several operations for solving the turbulence influence of high-energy particle events and other mode testing.

Major operational updates of WindRAD L1 processing have been carried out from 2021 to 2023.

	2021				2022		2023	3
2021.07 .05 satellite launch	2021.07. 09 WindRAD switched on	2021.09 Reduced points for secondary geolocation and resampling to improve timeliness	2021.10 Slice average for L1B processing	2021.11 Improve quality inspection methods	2022.01 Add threshold filtering of zenith angle	2022.04 Backscattering coefficient correction added to C V & Ku H/V	2023.04 Update calibration factors and correction factors, retain negative values for sigma0 in L1	2023.08 C-band power amplifier master switches to backup. C-band solid-play power was abnormal; solid-state power amplifier turned off; travel voice tube power amplifier turned

2. Instrument status

Key telemetry parameters (green: Ku, blue: C)

•Actual rotation speed

- •Temperature of key components
- •Internal calibration value

2. Instrument status

Global land/sea surface backscattering L1 products of FY-3E/WindRAD (20231114)

A ...

NSMC

PART 03

L1 Data Validation

WindRAD L1 Validation

• L1 product validation: the long term observation data from natural distributed targets and the data of similar instruments are used to evaluate L1 results.

- ➢ ocean calibration, SNO, rainforest
- ✓ Geophysical Model Functions (NSCAT-4 and CMOD7) are used for ocean calibration.
- ✓ The calibration accuracy is also evaluated by cross calibration method based on reference instruments, including Metop ASCAT, CFOSAT SCAT and HY-2 SCAT.
- ✓ The variation of sigma0 in rainforest region with incidence angle is analyzed.

-----The ocean calibration and SNO results are then presented in detail.

3. L1 Data Validation

>NOC (NWP Ocean Calibration)

vertical axis: the difference between observed sigma0 and simulated sigma0.

Time Series of Sigma0 difference (NOC)

FY3E_WindRAD_C_A_Lat50_10km_HH_14D 2023-09-16 ~ 2023-10-15

Time series diagram of sigma0 difference (NOC) for C-band (September 16th to October 15th).
 Bias is stable, and the bias of different incident angles is different.

NSMC

3. L1 Data Validation

>NOC (NWP Ocean Calibration)

Ku H Ascending(10km grid)

Ku H Descending(10km grid)

Time series diagram of Sigma0 difference(NOC) for Kuband (September 16th to October 15th).
 The sigma0 bias of Ku band is smaller.

NSMC

>NOC (NWP Ocean Calibration)

➢Incidence angle distribution of sigma0 difference for C band data from 20230916 to 20231015.

The variation of the calibration bias with the incidence angle can be seen more clearly.

>NOC (NWP Ocean Calibration)

Incidence angle distribution of sigma0 difference for Ku band data from 20230916 to 20231015.
 Angle correction can be carried out in the retrieval.

-- 20230917 - 20231001 -0.02 2023101 -0.04 0.00- Diff(dB) -0.10 -0.12 -0.14 37 38 39 41 42 40 43 Incidence Angle (degree) FY3 L1质量监测平台 Ku V Ascending(10km grid) Incidence Angle Distribute of Sigma0 difference (NOC) '3E WindRAD Ku D Lat50 10km VV 14D 2023-09-16 ~ 2023-10-15 0.15 -- 20230917 - 20231001 0.10 20231015 0.05 0.00 Diff(dB) -0.05 -0.10 -0.15 -0.20 37 38 39 40 41 42 Incidence Angle (degree) FY3 L1质量监测平台 Ku V Descending (10km grid)

Incidence Angle Distribute of Sigma0 difference (NOC)

FY3E_WindRAD_Ku_A_Lat50_10km_VV_14D 2023-09-16 ~ 2023-10-15

0.00

NSMO

>NOC (NWP Ocean Calibration)

The results of calibration accuracy based on NWP ocean calibration:

Band	Me	ean bias(dE	3)	Std of bias (dB)		B)
Dana	Ascend	Descend	All	Ascend	Descend	All
C-H-10km	1.13	0.56	0.78	1.66	1.24	1.45
C-H-20km	0.92	0.47	0.64	1.35	1.05	1.20
C-V-10km	0.16	0.08	0.11	1.09	0.75	0.89
C-V-20km	0.00	0.01	0.01	0.73	0.53	0.61
Ku-H-10km	0.47	0.57	0.52	0.82	0.93	0.88
Ku-H-20km	0.42	0.52	0.47	0.74	0.86	0.80
Ku-V-10km	0.12	0.21	0.16	0.37	0.47	0.43
Ku-V-20km	0.09	0.19	0.14	0.34	0.44	0.40

The calibration accuracy is less than 1 dB.
Smaller bias in C VV and larger bias in C HH.
(The forward model of C H band is jointly
developed with NUIST, and the coefficient of
GMF will be further updated.)
Further improvements will be made after the

update of GMF.

SNO for WindRAD L1 validation

◆In addition to NOC, the calibration accuracy is evaluated by cross calibration method based on reference instruments, including Metop ASCAT, CFOSAT SCAT and HY-2 SCAT.

The two data sets are matched by adjusting

Time threshold

Space threshold

Incidence angle threshold

Azimuth angle threshold

3. L1 Data Validation

The following is SNO results of :

≻FY-3E WindRAD vs. CFOSAT SCAT Ku HH data (20221101-20221129)

Ku HH

Spacial Distribution of (Sigma_bias) 2022-11-01~2022-11-29 FY3E_WRAD_K_CFO_SCAT HH_10km global

>Matching points are distributed in two latitude regions of north and south poles.

➤The correlation coefficient is 0.93, mean bias is 1.23, and standard deviation is 1.94.

WindRAD vs. CFOSAT SCAT	HH 10km	VV 10km
Matching points	96182	88784
Correlation coefficient	0.93	0.94
Mean / dB	1.23	0.21
Std / dB	1.94	0.56

Correlation Analysis of FY3E_WRAD_K_CFO_SCAT. HH_10km

≻FY-3E WindRAD vs. CFOSAT SCAT Ku VV data (20221101-20221129)

Ku VV

Spacial Distribution of (Sigma_bias) 2022-11-01~2022-11-29 FY3E_WRAD_K_CFO_SCAT VV_10km global

>The correlation coefficient is 0.94, mean bias is 0.21, and standard deviation is 0.56.

	1	
WindRAD vs. CFOSAT SCAT	HH 10km	VV 10km
Matching points	96182	88784
Correlation coefficient	0.93	0.94
Mean / dB	1.23	0.21
Std / dB	1.94	0.56

≻FY-3E WindRAD vs. HY-2B SCAT Ku HH data (WindRAD 20231001-1031)

Ku HH

WindRAD vs. HY-2B SCATHH WVCMatching points583390Correlation coefficient0.95Mean / dB-0.78Std / dB2.47

Correlation Analysis of FY3E_WRAD_K_HY2B_SCA_WVC. HH

➤ Matching points are distributed globally.

➤The correlation coefficient is 0.95, mean bias is minus 0.78, and standard deviation is 2.47.

20

≻FY-3E WindRAD vs. HY-2C SCAT Ku HH data (WindRAD 20231001-1031)

Matching points mainly in the low and mid-latitude.
The correlation coefficient of SNO is 0.94, mean bias is minus 0.39, and standard deviation is 2.45.

WindRAD vs. HY-2C SCAT	HH WVC
Matching points	171797
Correlation coefficient	0.94
Mean / dB	-0.39
Std / dB	2.45

NSM

21

FY-3E WindRAD vs. HY-2D SCAT Ku HH data (WindRAD 20231001-1031)

Ku HH

 \succ Matching points mainly in the mid-latitude.

and standard deviation is 1.95.

WindRAD vs. HY-2D SCAT HH WVC 85361 Matching points Correlation coefficient 0.94 Mean / dB -0.09 Std / dB 1.95

22

NSM

FY3 L1质量监测平台

Correlation Analysis of FY3E_WRAD_K_HY2D_SCA_WVC. HH global 2023-10-01~2023-10-31

FY-3E WindRAD vs. Metop-B ASCAT C VV data (WindRAD data, 20220901-20221001(No recent matches)) C VV

Spacial Distribution of (Sigma_bias) 2022-09-01~2022-10-01 FY3E_WRAD_C_METOPB_ASCAT VV global

Matching points mainly in the North and South poles.
 The correlation coefficient is 0.77, mean bias is minus 0.25, and standard deviation is 2.53.

WindRAD vs. Metop-B ASCAT	VV WVC
Matching points	449119
Correlation coefficient	0.77
Mean / dB	-0.25
Std / dB	2.53

SNO for WindRAD L1 validation

- According to the SNO results, the distribution characteristics of the sigma0 are generally consistent with those of similar instruments.
- SNO results will continue to be analyzed in the future.

	HY-2B	HY-2C	HY-2D
VVINURAD VS. HY-2 SCAT	HH WVC	HH WVC	HH WVC
Matching points	583390	171797	85361
Correlation coefficient	0.95	0.94	0.94
Mean / dB	-0.78	-0.39	-0.09
Std / dB	2.47	2.45	1.95

WindRAD vs. CFOSAT SCAT	HH 10km	VV 10km
Matching points	96182	88784
Correlation coefficient	0.93	0.94
Mean / dB	1.23	0.21
Std / dB	1.94	0.56

WindRAD vs. Metop-B ASCAT	VV WVC
Matching points	449119
Correlation coefficient	0.77
Mean / dB	-0.25
Std / dB	2.53

PART 04

Summary

≻The status of WindRAD is quite stable. High-energy particle events happened many times and some observation data were influenced from these events.

Several major updates of L1 data processing were carried out, including QA, correcting backscattering coefficient, updating calibration factors and correction factors, and so on.

According to the NOC results, the deviation under each incident angle is stable. C band HH data will be reevaluated in the near future.

4. Summary

> According to the SNO results, the distribution characteristics of the sigma0 are generally consistent with those of similar instruments.

➢ After 6 months of trial operation, FY-3E ground system has been successfully entered the operational stage in 2022. WindRAD L2 products continue to provide services for typhoon monitoring, and has started assimilation application research in NWP.

 \succ Further improvements will be made to L1 data processing and new validation results will be provided.

Thank you for your attention

yuanm@cma.gov.cn NSMC, CMA