

A Review of the GNSS-R Wind Product from the Chinese Fengyun-3 Constellation

Feixiong Huang^{1*}, Junming Xia¹, Cong Yin¹, Xiaochun Zhai², Yueqiang Sun¹, Weihua Bai¹, Qifei Du¹, Guanglin Yang², Na Xu², Wenqiang Lu², Lin Chen², Xiuqing Hu², Yan Liu³

¹National Space Science Center (NSSC), Chinese Academic of Sciences (CAS) ²National Satellite Meteorological Center (NSMC), China Meteorological Administration ³Center for Earth System Modeling and Prediction, China Meteorological Administration

> International Ocean Vector Winds Science Team meeting 2023 November 30, 2023

Outline

- 1. Mission overview
- 2. Calibration and wind speed retrieval
- 3. Cyclone wind product
- 4. Conclusions and Future Perspective

GNSS-Reflectometry (GNSS-R): Use the reflected signals from global navigation satellites to measure the Earth surface in a bistatic configuration

Features:

- L-band forward quasi-specular reflection sensitive to mean square slope (both wind and swell)
- Abundant signal sources
- Passive sensor, low cost/size/weight
- High spatial/temporal samplings from a constellation
- L-band signal, not affected by rains
- Provide precise positioning and timing information for the whole platform like a conventional GPS receiver

Limitations:

- Difficult to calibrate the transmitter varies and we know little information about them
- SNR decreases at high wind speeds
- Gaps between observation tracks not good to resolve TC structures

FengYun-3 GNSS-R Constellation

	FY-3E	FY-3F	FY-3G
Launch date	2021-07-05	2023-08-03	2023-04-16
Altitude (km)	836	836	407
Inclination angle (°)	98.5	98.5	50
Descending Time	5:40	10:00	Drifting

The GNOS-II GNSS remote sensing payload

Major advancements of FY-3 compared to previous GNSS-R missions:

- Combination of GNSS-R and GNSS RO
- Receive signals from multiple GNSS systems (GPS, BeiDou and Galileo)
- Combination of polar orbit and low inclination orbit
- Big satellites with better attitude and temperature control (compared to small satellites)
- Operational missions with average data latency less than 3 hours
- Work together with a scatterometer on FY-3E

Number of nadir antenna	1
Number of reflection channels	8
GNSS frequency	GPS L1C/A, BeiDou B1I and Galileo E1B
Reflection antenna peak gain	15 dBi
Sampling frequency	1 Hz
DDM dimensions	122 delays 20 Dopplers

"Tianmu" (天目) Constellation (2023)

Now 10 small satellites on-orbit (520km, SSO)

2023/01/09	TM01-02
2023/03/22	TM03-06
2023/07/20	TM07-10
2023/12	TM11-22

The instrument and technology are almost the same as FY-3

Number of wind speeds per day

50 kg,70 W, 820×420×1065 (In-folder)

GNSS-R product and key variables:

Product	Description
L1 product	Delay-doppler maps (DDMs)
	geometry parameters, observables,
	antenna gain and SNR
L2 wind product	Ocean surface winds,
	mean square slope, smoothed
	observables and spatial resolution
L2 soil moisture product	Land reflectivity, soil moisture,
	spatial resolution and ancillary data
Raw IF product	Raw IF sampling data, GNSS PRN
	code, and collection time

Add to Cart Wind Speed

Raw IF product: 12 geographical illumination targets deployed for each satellite to trigger raw sampling mode for scientific research including:

Coast winds, RFI, phase altimetry, river detection, .etc.

FY-3E GNSS-R L1 and L2 wind data can be download at FengYun Satellite Data Center: http://data.nsmc.org.cn/portalsite/default.asp x?currentculture=en-US

Outline

Calibration of the instrument gain

$$P(\tau,f) = GC_r(\tau,f)$$

$$\uparrow$$

$$\uparrow$$
 Receiver raw digital count

Prelaunch thermal cycling experiment

Calibration of normalized bistatic radar cross section (NBRCS)

$$A_{\tau,f} = \iint_A \Lambda^2_{\tau,x,y} S^2_{f,x,y} dx dy$$

Spatial resolution/Scattering area: GPS>BDS>GAL

EIRP profiles of all GNSS satellites are measured by a static power monitor

In-orbit ocean calibration by incidence and azimuth angle:

Reference inc angle: 25°

Reference azimuth angle: 90/180/270 °

(depending on the antenna pointing direction)

To remove calibration errors such as EIRP, antenna patterns...

NBRCS correction (dB)

-1

40

20

30

GPS

BDS GAL

50

Correction for radio frequency interference based onboard automatic gain control (AGC):

GNSS SBAS systems

L-band communication signals

Huang, Feixiong, Cong Yin, Junming Xia, et al. "Analysis and Mitigation of Radio Frequency Interference in Spaceborne GNSS Ocean Reflectometry Data." *IEEE* Transactions on Geoscience and Remote Sensing (2023).

Global Wind speed bias

GNSS-R is a good tool to monitor L-band RFI!

Intercalibration between GPS/BDS/GAL:

CYGNSS NBRCS (dB)

Wind speed (m/s)

(b)

Huang, F., Xia, J., Yin, C., Bai, W., Sun, Y., Du, Q., ... & Duan, L. (2022). Characterization and Calibration of Spaceborne GNSS-R Observations Over the Ocean From Different BeiDou Satellite Types. *IEEE Transactions on Geoscience and Remote Sensing*, 60, 1-11.

Two observables, DDMA and LES, are used to train GMF for wind speed retrieval

- Trained by collocated ECMWF ERA5 winds
- Wind speed retrieved by a minimum variance estimation
- Different GMF (actually almost same) for each GNSS system (GPS/BDS/GAL)

Wind speed retrieval statistics: (FY-3E during July 1 to August 31, 2022) Overall RMSE ~1.4-1.5 m/s

The GNSS-R wind speeds of FY-3E has been operationally assimilated into the CMA-GFS NWP system!

FY-3E/F/G wind speeds in 5 days:

Combined FY-3E/F/G wind speeds in one day:

Outline

In the condition of tropical/extratropical cyclones, the sea state is different from normal cases (fully-developed sea vs. young sea with limited fetch)

Global wind product

- Highest accuracy for global low-to medium wind speeds (< 25 m/s)
- GMF trained by ECMWF ERA5

Cyclone wind product

- Optimized for high wind speeds (up to 60 m/s) for tropical and extratropical cyclones
- GMF trained by HWRF model winds (to obtain enough high wind speed collocations)
- For cyclone monitoring, regional data assimilation and related studies

Release the two products at the same time, and let users to decide which one to use

HWRF (The Hurricane Weather Research and Forecasting):

- US NOAA operational regional model specially for tropical cyclones, used by NHC and JTWC
- Assimilate SFMR winds in the Atlantic and East Pacific
- Provide reference winds for all TCs

• HWRF has products with different resolutions, we use 2km product and smooth it to 25km in the comparison

2km HWRF model winds

- Semi-empirical GMF was trained in a similar method
- Assessed by SMAP and HWRF winds

Compared to HWRF winds for TCs in 2021-2023 (smoonthed to 0.25deg, time threshold = 1 hour)

Compared to SMAP winds for observations inside R34 for TCs in 2021-2023 (time threshold = 1 hour)

Super Typhoon "Mawar" (2023) – monitoring the TC track

Outline

Conclusions and Future Perspective

Summary:

- There are three operational Fengyun-3 satellites (FY-3E/F/G) carrying GNSS-R payloads
- The data of FY-3E are open to the public and also operationally assimilated into the CMA-GFS model
- After extensive calibration, the RMSE of wind speeds is around 1.4 m/s globally compared to ECMWF and scatterometer winds
- A cyclone wind product is specially developed for TC, and validated by HWRF and SMAP winds

Future work:

- Fill the gaps between tracks using interpolation/ML/full DDM observations
- Improve the cal/val at high wind speeds
- Validation in extratropical cyclones

Conclusions and Future Perspective

Three more FY-3 satellites (FY-3H/I/J in 2024-2027) will also carry GNSS-R payloads FY-5 series in mission design with enhanced instrument capabilities such as advanced antenna, polarization, etc.

Thank you!

huangfeixiong@nssc.ac.cn

