

A new airborne instrument to image oceanatmosphere dynamics at the sub-mesoscale: OSCAR instrument capabilities and the SEASTARex airborne campaign

Adrien Martin, David McCann, Karlus Macedo, Wenming Lin, Giuseppe Grieco, Louis Marié, José Marquez, Ruben Carrasco, Rui Duarte, <u>Marcos Portabella</u>, Adriano Meta, Christine Gommenginger, Petronilo Martin-Iglesias, Tania Casal

noc.ac.uk

SeaSTAR motivation

High-resolution satellite images often show small ocean eddies, swirls and filaments at scales below 10 km.

Frequent near jets, large eddies, in coastal and polar seas

Fingerprints of dynamic processes at the sea surface

Few observations of surface dynamics at these scales

Challenging & expensive

Numerical models indicate small-scale ocean phenomena have major impact on global ocean circulation and climate.

Key role of ageostrophic circulation and interactions with surface winds and waves

Impact on vertical exchanges e.g. heat, CO2, nutrients...

Impact on horizontal dispersion & pathways e.g. debris, oil...

No existing or planned mission with the necessary performance and space-time sampling to observe these small and fast processes.

SeaSTAR Primary science objectives

to measure, for the first time, **2D images** of **Total Surface Current Vectors** and **Ocean Surface Vector Winds** at **1 km resolution** with high accuracy, over all **coastal seas**, **shelf seas and Marginal Ice Zones**.

to characterise their **magnitude**, **2D spatial variability** and **temporal variability** on **daily, seasonal to multi-annual** time scales.

to deliver, for the first time, **high-order derivative products like gradients**, **vorticity**, **strain and divergence** to explore the relations between small-scale phenomena and **vertical exchanges between the atmosphere and the ocean interior**.

to investigate the relations between small-scale surface dynamics and **marine productivity** using **synergy with in situ data and high-resolution optical, thermal and microwave satellite data**.

to validate high-resolution and coupled models and support the development of new parameterisations to improve operational forecasts and reduce uncertainties in climate projections.

SeaSTAR Secondary science objectives

to measure **instantaneous sea ice drift vectors** with high-accuracy to observe **the sea ice and ice floes response at small scales for different wind, waves & current forcing**.

to develop new experimental products for **full directional ocean wave spectra** (including wind waves) to study localised surface phenomena, including fronts, wave breaking, Langmuir cells...

to examine ocean current and wind fields close to major estuaries to investigate the dispersion of major river plumes in coastal zones and the fate of terrestrial inputs to the ocean.

SeaSTAR Primary Products & Requirements

SeaSTAR Primary Products (Level 2)						
Total Surface Current Vector (L2-TSCV)						
	One continuous swath:	≥ 100-150 km	Essential			
	Horizontal posting (resolution):	≤ 1 km				
	TSCV Uncertainty @ 1km resolution:	≤ 0.1 m/s or 10%				
Ocean Surface Vector Wind (L2-OSVW)						
	Same swath as TSCV					
	Same horizontal posting as TSCV					
	OSVW Uncertainty @ 5km resolution: ≤ 1 m/s or 10%					

SeaSTAR measurement principle

Squinted SAR Along-track Interferometry (ATI), Ku-band

Backscatter & Doppler in 3 azimuth directions

Simultaneous measurements of total current vector, wind vectors and directional wave spectrum

one pair looking forward (+45°)(VV) one pair looking backward (-45°)(VV) one broadside DCA or ATI (VV, HH)

Heritage

Scatterometry SAR Doppler Anomaly *Envisat ASAR, Tandem-X, Sentinel-1* Dual-Beam Interferometer Wavemill

SeaSTAR Space-time sampling

Focus on Coastal, Shelf-seas & Marginal Ice Zones + Open-ocean Regions of Special Interest

As an independent dedicated mission, SeaSTAR can tailor its space-sampling to its science needs

Two mission phases:

Fast-repeat phase (6 months)

1 day repeat

150 scenes every day, each 250 km long

Drifting orbit (4 years) ~30-day repeat, 1-day sub-cycle 50% swath overlap at the Equator

OSCAR/SEASTARex Campaign - Long story short – start in 2016

Aircraft certification Feb 2022

8

A. Martin (National Oceanography Centre)

ESA LPS 22 Bonn

-11 km

Data Production Updates

We have focused all 17, 22, 25, 26 days (besides the circular tracks)

26

25

11

Star-pattern tracks

The star-pattern was flown so each channel effectively gives look directions at 45° 4 intervals around the compass

Assuming environmental homogeneity we can then group data by incidence angle and look azimuth

Numerical Ocean Calibration

- 1. Filter the OSCAR land data using the GSHHG land-sea mask;
- 2. Collocate ASCAT winds with OSCAR observation (<1 h);
- 3. Interpolate ASCAT u/v wind components bi-linearly to OSCAR grids;
- 4. Simulate sigma0_ASCAT;
- 5. Calculate the difference between measured and simulated sigma0 (binning@0.2 m/s and 1°)
- 6. Average the sigma0 difference over all the wind speed bins.

Ocean Calibration results

Using the collocated ECMWF winds as calibration reference. The discrepancy is assumed to be due to wind variability effect

Assumptions:

- 1. The radar instrument is stable over the whole particular day;
- 2. The wind vector is constant for one particular flight leg. However, the wind vector may vary with the flight leg.

南京信息工程

- 3. The calibration factor only depends on the incidence angle.
- 4. The wind speed variability is smaller than 3 m/s, and the wind direction variability is smaller than 30°.

Ocean Calibration results

Using the collocated ECMWF winds Compared with the above 'retrieved' calibration curve (black)

Ocean Calibration results (using May 25th data)

Color curves: calibration using ECMWF wind vectors Black curves: calibration using the new method

Black curves: ECMWF wind vectors Red curves: Retrieved by the new method

Ocean Calibration results (using May 25th data)

Color curves: calibration using ASCAT wind vectors Black curves: calibration using the new method

Black curves: ASCAT wind vectors Red curves: Retrieved by the new method

For a given beam (Mid or Fore), the calibration factors are of similar shapes on different days, but with a bias of 3-4 dB.

Calibration factors for different dates

For a given beam (Mid or Fore), the calibration factors are of similar shapes on different days, but with a bias of 3-4 dB.

Calibration factors for different dates

L2 simultaneous retrieval results

Comparison with X-band

Comparison with X-band

NovaSAR-1 & MARS2D comparison

MARS2D Current Velocity OSCAR Retrieved surface current velocity 20220517T0930 2022-05-17T09:32 3.0 Current Velocity (m/s 48.5°N 48.5°N 2.5 (s/m) 48.48°N 48.48°N 48.46°N 48.46°N velocity 48.44°N 48.44°N La Jun 48.42°N 48.42°N Retrieved 1.0 48.4°N eo 48.4°N 0.5 48.38°N 48.38°N image (S-band) courtesy 5.175°W SST25WMaFth75Cohen. A 0.0 5.16°W 5.12°W 5.08°W 5.04°W

Current

Comparison with HF Radar

Comparison with AROME

Star pattern

Validation

Assumption of temporal and spatial homogeneity allows us to take the mean retrieved parameter for each track of the pattern

No wind buoy (FLAME), so interpolated AROME to 200m grid, comparing at retrieved pixel level for RMSE

Currents						
	OSCAR	ADCP	RMSE			
Velocity (m/s)	0.64	0.62	0.08			
Direction (degrees N)	14.4	8.4	8.5			
Winds						
	OSCAR	AROME	RMSE			
Speed (m/s)	5.54	5.86	0.44			
Direction (degrees N)	49.08	45.75	5.43			

Radial Surface Current

'Star-pattern' analysis of grouping data by incidence angle and azimuth

GMF = Mouche (2012)

RSC data (points) with fitted curves (lines) for Fore and Aft channels

Black line is ADCP

Fore

ADCP

Aft

From SEASTARex to OSCAR-Med

The SEASTARex campaign focused on demonstrating the OSCAR instrument capabilities regarding SEASTAR primary objective:

- To measure, for the first time, **2D images** of **Total Surface Current Vectors** and **Ocean Surface Vector Winds** at **1 km resolution** with high accuracy, over all **coastal seas, shelf seas and Marginal Ice Zones**.
- Target: a strong tidal current region, i.e., the Iroise Sea

The next objective is to prove the OSCAR capabilities on

- Delivering, for the first time, **high-order derivative products like gradients, vorticity, strain and divergence** to explore the relations between small-scale phenomena and **vertical exchanges between the atmosphere and the ocean interior**.
- Target: a region with mesoscale and submesoscale features associated with strong vorticity and divergence fields and vertical exchanges between the ocean interior and the atmosphere, i.e., the Western Mediterranean

The OSCAR-Med campaign aims at flying OSCAR over the Western Mediterranean Sea to complement in situ research activities taking place in the context of the SWOT mission

BIOSWOT-Med PIs A.M.Doglioli and G.Grégori

T IS A.M.Dognon and G.Oregon

The BioSWOT-AdAC cruise in the SW Mediterranean Sea

Track 6 (Marseille): 91,2023-04-21 20:36:00, 92,2023-04-22 20:26:37, 93,2023-04-23 20:17:14, 94.2023-04-24 20:07:51. 95,2023-04-25 19:58:28, 96,2023-04-26 19:49:05. 97.2023-04-27 19:39:42. 96..2023-04-27 06:29:35 98.2023-04-28 19:30:19, 97.,2023-04-28 06:20:12 99.2023-04-29 19:20:56. 98..2023-04-29 06:10:49 100,2023-04-30 19:11:33, 99, 2023-04-30 06:01:26 101,2023-05-01 19:02:10, 100,,2023-05-01 05:52:03 102,2023-05-02 18:52:47, 101,,2023-05-02 05:42:40 103,2023-05-03 18:43:24, 102,,2023-05-03 05:33:17 104.2023-05-04 18:34:01. 103..2023-05-04 05:23:54 105,2023-05-05 18:24:38, 104, 2023-05-05 05:14:31 106,2023-05-06 18:15:15, 105,,2023-05-06 05:05:08 107,2023-05-07 18:05:52, 106,,2023-05-07 04:55:45 108,2023-05-08 17:56:29, 107, 2023-05-08 04:46:22 109,2023-05-09 17:47:06, 108,,2023-05-09 04:36:59 110,2023-05-10 17:37:43, 109,,2023-05-10 04:27:36 111,2023-05-11 17:28:20, 110,,2023-05-11 04:18:13 112,2023-05-12 17:18:57, 111,,2023-05-12 04:08:50 113,2023-05-13 17:09:34, 112,,2023-05-13 03:59:27 114.2023-05-14 17:00:11. 113..2023-05-14 03:50:04

Track 19 (Baleares) 90.,2023-04-21 07:25:53 91,,2023-04-22 07:16:30 92.,2023-04-23 07:07:07 93..2023-04-24 06:57:44 94.,2023-04-25 06:48:21 95..2023-04-26 06:38:58

BIOSWOT-Med

Strategy and methodology

adaptive Lagrangian sampling strategies & Innovative instrumentation

SPASSO & MVP, gliders, AUV, drifters & floats, FFADCP, VVP, Cytometry, zooplankton and omics

37

SeaSTAR community

ESA team

Alejandro Egido (Mission Scientist) Tania Casal (Airborne Campaigns scientist) Kevin Hall (System Study Manager) Petronilo Martin-Iglesias (Payload & Performance) Valeria Gracheva (Payload & Performance) Dulce Lajas (E2E Simulators)

+ Lorenzo Iannini, M Cipollini, Craig Donld

SeaSTARe

Adrien Martin, Chris

David McCann (NOC, UK)

Louis Marié (Ifremer, FR)

Wenming Lin (NUIST, CN)

Giuseppe Grieco (ISMAR, IT)

Karlus Macedo (MetaSensing, NL)

Jose Marquez (RadarMetrics, SP)

Marcos Portabella (ICM-CSIC, SP)

Science Consolidation team

Christine Gommenginger, Adrien Martin (National Oceanography Centre, Uk) Fabrice Collard, Clément Ubelmann (Ocean Data Lab, France) Anis Elyouncha, Leif Eriksson (Chalmers University Of Technology, Sweden) Joanna Staneva, Benjamin Jacob, Johannes Schulz-Stellenfleth (Helmholtz-Zentrum Hereon, Germany) Louis Mariá Eabrico Ardhuin (Ifromer France)

Unfortunately, SEASTAR was not selected! EE13 candidate mission?

MINI REVIEW published: 13 August 2019 doi: 10.3389/fmars 2019.0045

Alda Alvera-Azcarate (University of Liege, Belgium) Ole Baltazar Andersen (DTU Space, Denmark) Christian Trampuz, Adriano Meta (MetaSensing, NL) Fabrice Ardhuin (CNRS / LOPS, France) Antonio Bonaduce (NERSC, Norway) Jean-Francois Fillipot (France Energies Marines, FR) Øyvind Breivik (Norwegian Meteo Institute, Norway) Fabrice Collard (OceanDataLab, France) Jochen Horstmann (Helmholtz-Zentrum Hereon, DL) Mohammed Dabboor (Environment and Climate Change, Canada) Robert King (Met Office, United Kingdom) Joanna Staneva (Helmholtz-Zentrum Hereon, Germany) Ad Stoffelen (KNMI, The Netherlands) And more... David Woolf (Heriot Watt University, United Kingdom)

or Study Ocean **Submesoscale Dynamics and** Small-Scale Atmosphere-Ocean Processes in Coastal, Shelf and **Polar Seas**

Christine Gommenginger^{1*}, Bertrand Chapron², Andy Hogg³, Christian Buckingham⁴, Baylor Fox-Kemper⁵, Leif Eriksson⁶, Francois Soulat⁷, Clément Ubelmann⁷, Francisco Ocampo-Torres⁸, Bruno Buongiorno Nardelli⁹, David Griffin¹⁰, Paco Lopez-Dekker¹¹, Per Knudsen¹², Ole Andersen¹², Lars Stenseng¹³, Neil Stapleton¹⁴, William Perrie¹⁵, Nelson Violante-Carvalho¹⁶, Johannes Schulz-Stellenfleth¹⁷, David Woolf¹⁸, Jordi Isern-Fontanet¹⁹, Fabrice Ardhuin², Patrice Klein², Alexis Mouche², Ananda Pascual²⁰, Xavier Capet²¹, Daniele Hauser²², Ad Stoffelen²³, Rosemary Morrow²⁴, Lotfi Aouf²⁵, Øyvind Breivik^{26,27}, Lee-Lueng Fu²⁸, Johnny A. Johannessen²⁹, Yevgeny Aksenov¹, Lucy Bricheno³⁰, Joel Hirschi¹, Adrien C. H. Martin¹, Adrian P. Martin¹, George Nurser¹, Jeff Polton³⁰, Judith Wolf³⁰, Harald Johnsen³¹, Alexander Soloviev³², Gregg A. Jacobs³³, Fabrice Collard³⁴, Steve Groom³⁵, Vladimir Kudryavtsev³⁶, John Wilkin³⁷, Victor Navarro³⁸, Alex Babanin³⁹, Matthew Martin⁴⁰, John Siddorn⁴⁰, Andrew Saulter⁴⁰, Tom Rippeth⁴¹, Bill Emery⁴², Nikolai Maximenko⁴³, Roland Romeiser⁴⁴, Hans Graber⁴⁴, Aida Alvera Azcarate⁴⁵, Chris W. Hughes^{30,46}, Doug Vandemark⁴⁷, Jose da Silva⁴⁸, Peter Jan Van Leeuwen^{49,50}, Alberto Naveira-Garabato⁵¹, Johannes Gemmrich⁵², Amala Mahadevan⁵³, Jose Marquez⁵⁴, Yvonne Munro⁵⁴, Sam Doody⁵⁴ and Geoff Burbidge⁵⁴

National Oceanography Centre

Synergy with other missions

Star-pattern on May 22nd

Calibration (Sigma-0)

Interferograms (uncalibrated)

Interferogram – land calibrated (L1c)

Wind-wave Artefact Surface Velocity (WASV)

'Star-pattern' analysis of grouping data by incidence angle and azimuth

RSV data (points) with fitted curves (lines) for Fore and Aft channels

WASV = RSV - ADCP

What about extremes?

Over hurricanes (sampling permitting)

- SeaSTAR instrument operates in Ku-band, thus limited by rain contamination effects
- But at high spatial resolution!
- +heritage from Ku-band scatterometer QC

Before and after hurricanes, we could study

- The formation and temporal evolution of cold wakes
- The response of the ocean meso- and submesoscale to intense atmospheric events

BIOSWOT-Med

1) ver	tical	adve	ection
--------	-------	------	--------

From altimetry to w

Numerous works (e.g. Lapeyre, G., & Klein, Qiu et al, 2016,2020, Pietri et al 2021) show a need of :

in situ direct measurement of the balanced (Med Sea ideal conditions with no tide) — in particular in the surface layer

associated with

- Mixing microstructure measurment

- High resolution ctd cast

- Horizontal vorticity

hull mounted ADCP and surface drifters

Data Production Updates

We have focused all 17, 22, 25, 26 days (besides the circular tracks)

17 (cal + 1 available)

22 (cal + all available)

26 (cal)

25 (cal + 1)

Pierre Garreau (IFREMER), Frank Dumas (LOPS-SHOM)

C-SWOT 2023 A TWO SHIPS STRATEGY FOR MORE SYNOPTICITY

-0.300

-0.325

-0.350

-0.375 E

-0.400 S

-0.425 K

-0.450

-0.475

-0.500

8°'E

6°'E

C-SWOT 2023

TOOLS TO BE DEPLOYED DURING THE CRUISES

High resolution transects

Lagrangian approach

Carthe drifters

Classical

hydrology

using CTD

and LADCP

GDP drifters

DRIX

USV

surface

vehicle

Unmanned

VMADCP (0-400m)

"Flame" buoys (Air-Sea exchanges)

49

C-SWOT

SWOT orbits during the Cal/Val phase over the Mediterranean Sea

Location of the BioSWOT ship campaign in 2018. The BioSWOT-Med campaign in May 2023 would take place in the same area (currently waiting for authorisation by Spanish authorities).

SeaSTAR Summary

SeaSTAR is a dedicated ocean mission to address clear and urgent scientific needs for new synoptic imaging of ocean current and wind vectors at fine resolution ~ 1km.

SeaSTAR focuses on key interfaces of the Earth system and is relevant to a large and growing community of ocean, atmosphere, cryosphere, coastal and climate scientists and operators.

https://projects.noc.ac.uk/seastar/

A 'quantum leap in knowledge' for Earth Observation and Earth Science

The first mission of its kind, with some ambitious elements, that builds on high levels of scientific and technological readiness in Europe.