

Federico Cossu (ICM-CSIC) Evgeniia Makarova (ICM-CSIC) Albert S. Rabaneda (Met Norway) Marcos Portabella (ICM-CSIC) Joe Tenerelli (OceanDataLab) Nicolas Reul (Ifremer) Ad Stoffelen (KNMI) Giuseppe Grieco (ISMAR-CNR) Joseph Sapp (NOAA-NESDIS) Zorana Jelenak (NOAA-NESDIS) Paul Chang (NOAA-NESDIS)

> Norwegian Meteorological__

nstitute

. OceanDataLab

rem

portabella@icm.csic.es

ASCAT adjusted wind field over Hurricane Dorian using SFMR winds as calibration reference

Aeteorologisch Instituut

ESA MAXSS project: Extreme wind inter-calibration & validation

- <u>Aim</u>: To adjust radiometers & scatterometers high & extreme winds using SFMR (2010-2020)
 - OSI SAF: ASCAT-A, -B & -C, Rapidscat, OSCAT, OSCAT2, HY-2A & -2B
 - **REMSS**: Windsat (v7), AMSR-2 (v8), SMAP (v1)
 - Ifremer: SMOS (v2)
- Assess spatial representativeness
 - Look for suitable SFMR upscaling for each SCAT & RAD
- Analyse QC effects
- Assess SFMR calibration
- Ensure inter-calibration among all satellite systems

SFMR & GPS Dropsonde

2009.08.18 - 21.17.45 4000 NCAR GPS Dropsonde 3500 the definitive atmospheric profiling too 3000 2500 E Altitude (1 12000 1000 500 0 6 8 12 14 16 Wind speed (m/s)

SFMR:

- Nadir-pointing radiometer at C-band.
- The equivalent neutral surface wind speed retrieved by inversion of a Geophysical Model Function.
- Surface wind retrieval are provided in 1-sec sampling and the aircraft position is assigned to each wind retrieval.

Dropsondes:

- They provide the wind profile
- The 10m equivalent neutral surface wind speed and direction *empirically derived* by the WL150 algorithm.
- Surface wind value consists in an heightweighted average of the dropsonde readings available within the lowest 150m-layer between 10m and 350m.

BEC

IEEC

ASCAT wind field over Hurricane Karl on September 23rd, 2016

- SFMR collocations in storm-motion centric coordinates
- Model (ECMWF/MM) spatially and temporally interpolated to the Satellite wind field

SFMR upscaling effects

SFMR upscaling effects at SFMR 1-sec sampling

SFMR upscaling effects at 12.5 km sampling

• SFMR upscaling effects are significantly smaller at 12.5-km (ASCAT-A) sampling

Ku-band QC effects

Rain contamination filtered out by KNMI_QC; but then, only few extreme wind points left

SFMR calibration effects

• SFMR calibration variations of up to 2 m/s between the range 15-30 m/s

C-band scatterometer extreme wind adjustment

- Assume a mean SFMR calibration by using the full 2009-2020 period
- Assume all ASCATs well intercalibrated

Original ASCAT winds

Adjusted ASCAT winds

BEC

- All scatterometer & radiometer winds adjusted using SFMR as reference
- A similar exercise is done with ERA5; the MM product is already adjusted by definition

ASCAT extreme wind adjustment

bec.icm.csic.es

Radiometer extreme wind adjustment

- SMAP winds show good correlation although a slight overestimation at extremes w.r.t. SFMR
- SFMR based fitting leads to more consistent (adjusted) SMAP winds

ESA MAXSS project: Extreme wind inter-calibration & validation

- Aim: To develop and validate the triple collocation method for extreme wind error characterization of the multi mission (MM) product
- Prior to this, to carry out triple collocation analysis to assess the quality of SCAT & RAD extreme wind data used as input to MM
- Focus on the tropical region, where triple collocation analysis is possible & wind adjustment is meaningful
- RapidSCAT (RSCAT) not used as input to MM in order to verify its quality using SFMR-RSCAT-MM triple collocations
- Intercomparison of RSCAT-MM under ETC conditions

EXAMPLE: ERA5 VS BLENDED WIND SPEED

ERA5 hourly wind fields are first rescaled and then used as the background for the blended wind field calculation:

MORPHING-BASED TEMPORAL ADJUSTMENT OF SENSOR WINDS TO ANALYSIS TIME

MORPHING-BASED TEMPORAL ADJUSTMENT OF SENSOR WINDS TO ANALYSIS TIME

$$J(u,v) = \int_{\Omega} \frac{0}{\Omega} \left[(I_1(x,y) - I_2(x+h_x,y+h_y))^2 + \alpha^2 (|\nabla u|^2 + \nabla v^2) \right] dx dy.$$

EXAMPLE: ERA5 VS BLENDED WIND SPEED

ERA5 hourly wind fields are first rescaled and then used as the background for the blended wind field calculation:

EXAMPLE: ERA5 VS BLENDED WIND SPEED

ERA5 hourly wind fields are first rescaled and then used as the background for the blended wind field calculation:

Triple collocation analysis

Barcelona Expert Center

The three wind sources are intercalibrated and their measurement errors estimated with the triple collocation analysis:

 $x_i = a_i(t + \varepsilon_i) + b_i$

$$M_{i} = \langle x_{i} \rangle; \quad M_{ij} = \langle x_{i} x_{j} \rangle$$
$$C_{ij} = M_{ij} - M_{i} M_{j}$$
$$T = \frac{C_{12}C_{13}}{C_{23}} - r^{2}$$

Error model: x_i is the wind measured by system i = 1,2,3; t is the true wind signal; ε_i is the measurement error for each system; a_i and b_i are the calibration coefficients.

 M_i and M_{ij} are the first and second order moments; C_{ij} are the covariances; T is the common variance; r^2 is the representativeness error.

Stoffelen, 1998; Vogelzang et al., 2021

Calibration coefficients:

Measurement errors:

$$a_{1} = 1; \qquad b_{1} = 0$$

$$a_{2} = \frac{C_{23}}{C_{13}}; \qquad b_{2} = M_{2} - a_{2}M_{1}$$

$$a_{3} = \frac{C_{13}}{T}; \qquad b_{3} = M_{3} - a_{3}M_{1}$$

$$\sigma_1^2 = \frac{C_{11}}{a_1^2} - T - r^2$$
$$\sigma_2^2 = \frac{C_{22}}{a_2^2} - T - r^2$$
$$\sigma_3^2 = \frac{C_{33}}{a_3^2} - T$$

Power density spectra

BEC

Barcelona Expert Center

Spatial variances

Spatial variances are:

- A more reliable measure of the wind variance as a function of scale
- More tolerant to missing points (QC)

Spatial variance analysis

- ASCAT 12.5km ERA5
- r² ~ 0.8m²/s² at 200 km scales

- ASCAT 25km ERA5
- r² ~ 0.3m²/s² at 200 km scales

Density plots triple collocation sources (SFMR-ASCATs-ERA5)

BEC

IEEC

Barcelona Expert Center

- SFMR original winds (100-m sampling)
- ERA5 large errors are apparent

Density plots before triple collocation analysis (SFMR_{upscaled}-ASCATs-ERA5)

BEC

IEEC

Barcelona Expert Center

ICM Institut

- SFMR **upscaled** winds (80-km along-track averaging)
- Reduced scatter on left & right plots due to SFMR upscaling

Density plots triple collocation sources

- SFMR upscaled winds
- We take calibration coefficients from 2-sigma test and apply them to Triple collocation calibration using 4-sigma test (QC) & r²=0.3 m²/s²

Triple collocation analysis

Error estimates (at ERA5 spatial scales; r²=0.3 m²/s²)

	SFMR (m/s)	ASCAT25 (m/s)	ERA5 (m/s)
SFMR original	3.60	0.85	2.77
SFMR upscaled	3.30	0.93	2.75

- Errors computed at **100-150 km scales**
- SFMR errors reduced when upscaled as expected

Triple collocation analysis

Error estimates (at ERA5 spatial scales; r²=0.3 m²/s²)

	SFMR (m/s)	Scatterometer (m/s)	ERA5 (m/s)
RSCAT	3.50	1.55	2.56
OSCAT	3.11	2.07	2.83
OSCAT-2	3.27	1.84	2.37
HSCAT-A	2.99	1.44	2.73
HSCAT-B	3.26	1.47	2.00

Summary scatterometer errors

Number of points (after 4-sigma test) for each triple collocated SFMR-Scatterometer-ERA5 set

	ASCATs	RSCAT	OSCAT	OSCAT-2	HSCAT-A	HSCAT-B
	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)
Number	20039	1513	4921	10678	3041	4979

- Each SFMR-Scatterometer-ERA5 collocated set samples different weather; some sets contain poor sampling
- Mean weighted variance and associated spread for SFMR & ERA5 errors computed
- Such spread is used to compute error bars for scatterometer uncertainty estimates

Summary scatterometer errors

Error estimates (at ERA5 spatial scales; r²=0.3 m²/s²)

	ASCATs	RSCAT	OSCAT	OSCAT-2	HSCAT-A	HSCAT-B
	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)	(m/s)
Error SD	$\boldsymbol{0.93\pm0.10}$	1.55 ± 0.16	$\boldsymbol{2.07\pm0.22}$	$\boldsymbol{1.84\pm0.19}$	1.44 ± 0.15	$\boldsymbol{1.47\pm0.16}$

Summary radiometer errors

Error estimates (at ERA5 spatial scales; r²=0.3 m²/s²)

	AMSR2	Windsat	SMAP	SMOS
	(m/s)	(m/s)	(m/s)	(m/s)
Error SD	$\boldsymbol{2.60\pm0.16}$	$\boldsymbol{2.87\pm0.18}$	$\boldsymbol{1.96\pm0.12}$	$\textbf{2.10} \pm \textbf{0.13}$

Triple collocation analysis

Error estimates (at ERA5/MM spatial scales ; r²=0.3 m²/s²)

	SFMR	RSCAT	ERA5	
	(m/s)	(m/s)	(m/s)	
SFMR upscaled	3.50	1.55	2.56	
	SFMR	RSCAT	MM	
	(m/s)	(m/s)	(m/s)	
SFMR upscaled	3.39	1.67	1.64	

- Substantial reduction in error variance of MM w.r.t. that of ERA5
- Uncertainty in the uncertainty estimates non-negligible though

Triple collocation analysis

Error estimates (at ERA5/MM spatial scales)

	SFMR	ERA5	Multi-Mission
	(m/s)	(m/s)	(m/s)
Error SD	3.41±0.23	2.66±0.23	1.64±0.17

- Errors given at **100-150 km scales**
- MM random errors substantially smaller than ERA5 errors

Intercomparison RSCAT-ERA5-MM

- No in-situ reference in ETCs; SFMR-based adjustment needs to be removed from all sources
- MM closer to RSCAT (independent reference in ETCs) than ERA5
- Joint MM/RSCAT variance 23% smaller than that of ERA5/RSCAT

Intercomparison RSCAT-ERA5-MM

- New ERA5 adjustment under TC conditions shows poor agreement with RSCAT for ETC conditions
- New ERA5 adjustment based on SFMR upscaled, while old adjustment is the same as used for all scatterometer systems
- Storm phase shift effects? ERA5 poorly resolved physical processes under TC conditions?

Extreme wind inter-calibration

- Adjustment of scatterometers & radiometers high & extreme winds using SFMR/dropsondes (2010-2020)
 - **OSI SAF**: ASCAT-A, -B & -C, Rapidscat, OSCAT, OSCAT2, HY-2A & HY-2B
 - **REMSS**: Windsat (v7), AMSR-2 (v8), SMAP (v1)
 - Ifremer: SMOS (v2)
- Accounting for spatial representativeness and QC effects
- Addressing SFMR calibration variations
- Ensuring inter-calibration among all satellite systems
- The L2 adjusted wind products are available on the ESA MAXSS study webpage (<u>https://www.maxss.org/Products/MAXSS-</u> <u>Product-Catalogue</u>)

ASCAT adjusted wind field over Hurricane Dorian using SFMR winds as calibration reference

Extreme wind validation

- Triple collocation analysis for the following
 - SFMR-Scatterometer-ERA5
 - SFMR-Radiometer-ERA5
 - SFMR-RapidSCAT-ERA5/MM
- Estimation of spatial representativeness errors using spatial variance analysis
- ASCAT winds have the lowest errors
- Ku-band winds are higher, although some rain contamination is present
- Radiometer winds contain the highest errors in general, with SMAP wind quality comparable to the noisiest scatterometers (OSCATs)
- The Multi-Mission (MM) wind quality is substantially higher than that of ERA5, and comparable to that of Ku-band winds (also under ETC conditions)

Future work

- Improve wind adjustment for Ku-band systems by revising QC effects
- Apply extreme wind adjustment to new scatterometer systems after 2020 (HY-2C, HY-2D, OSCAT3, WindRAD)

RFC

- Apply storm translation onto ERA5 to match scatterometer & radiometer storm centres
- Repeat triple collocation analysis SFMR-RSCAT-ERA5 for ERA5 used in MM generation
- Improve wind adjustment for ERA5; contribute to wind "unadjustment" of MM under ETC conditions
- Improve spatial variance analysis under TC conditions
- Spatial analysis on adjusted scatt & rad fields: wind radii, derivatives (divergence, curl)
- IWRAP data exploitation to analyze the consistency between sea surface wind fields (scatt, rad, ERA5, MM) and those aloft (IWRAP)

Can we reconcile dropsonde and buoy measurements?

4000

3500

3000

2500 (E

1500

1000

500

0

6

Altitude (2000

- ASCAT nominal winds calibrated against buoys
- Dropsonde & buoy scales ٠ increasingly differ above 10 m/s
- Which one should we trust? .

Strong deceleration close to the Surface

Wind speed (m/s)

12

10

14

16

Dropsondes

2009.08.18 - 21.17.45

- Height assignment errors ٠
- Sampling frequency

8

Dropsondes

institut de Clénoles

BEC

IEEC

Barcelona Expert Center

- Work well up to 25 m/s •
- Few measurements under TC conditions
- Wave effects? •

Scatterometer data availability (2010-2020)

Scatterometer systems	FORMAT	PERIOD	SOURCE	FREQUENCY
ASCAT-A	BUFR/NetCDF	Full period	OSI SAF	C-band
ASCAT-B	BUFR/NetCDF	11/2012 - 12/2020	OSI SAF	C-band
ASCAT-C	BUFR/NetCDF	01/2019 - 12/2020	OSI SAF	C-band
OceanSat-2	BUFR/NetCDF	01/2010 - 02/2014	OSI SAF	Ku-band
RapidScat	BUFR/NetCDF	11/2014 - 08/2016	OSI SAF	Ku-band
Scatsat-1	BUFR/NetCDF	01/2017 - 12/2020	OSI SAF	Ku-band
HY-2A	BUFR/NetCDF	06/2012 - 04/2015	OSI SAF	Ku-band
HY-2B	BUFR/NetCDF	01/2019 - 12/2020	OSI SAF	Ku-band
HY-2C	BUFR/NetCDF	11/2020 – 12/2020	OSI SAF	Ku-band
CFOSAT	BUFR/NetCDF	01/2019 – 12/2020	OSI SAF	Ku-band

Radiometer data availability (2010-2020)

		BE	C
Barcelo	na	Expert	Center
fcff Institut de Ciènoles del Mar	•		IEEC

Radiometers	FORMAT	PERIOD	SOURCE	FREQUENCY
SMOS	NetCDF-4	Full period	IFREMER	L-band
SMAP	Bytemap	04/2015 - 12/2020	REMSS	L-band
WindSat	Bytemap	01/2010 - 10/2020	REMSS	Channels (GHz): 6.8; 10.7; 18.7; 23.8; 37.0
AMSR2	Bytemap	07/2012 - 12/2020	REMSS	Channels (GHz): 6.93; 7.3; 10.65; 18.7; 23.8; 36.5; 89.0
SSMI / SSMIS	Bytemap	Full period	REMSS	Channels (GHz): 19.35; 23.235; 37.0; 85.5
GMI	Bytemap	03/2014 - 12/2020	REMSS	Channels (GHz): 10.65; 18.7; 23.8; 36.5; 89.0; 165.5; 183.31
ТМІ	Bytemap	01/2010 - 12/2014	REMSS	Channels (GHz): 10.65; 19.35; 21.3; 37.0; 85.5
AMSRE	Bytemap	01/2010 - 10/2011	REMSS	Channels (GHz): 6.93; 10.65; 18.7; 23.8; 36.5; 89.0