

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat

O Norwegian Meteorological Institute

(M. Ochi, 2013)

Extreme Winds from the Ku-band and C-band Wind Scatterometers

Xingou Xu, Ad Stoffelen, Weicheng Ni, Marcos Portabella and Alberto Rabaneda

ad.stoffelen@knmi.nl

Figure 4.1 – Portion of time history of wave profile in very severe sea state in North Atlantic measured by a weather ship.

IOVWST 2023. Nanjing, Jiangsu, China. 30th, Nov.

Contents

- 1. Background
- 2. The development of the scatterometer high wind
- 3. Improvement of the Ku-band scatteometer winds with references form C-band
- 4. Discussions and conclusions

Background

IOVWST 2023

(Isaksen & Stoffelen, 2000)

- Scatterometer Tropical Cyclone (TC) winds provide good information for NWP
- TCs are complex, multi-source information are important for improving scatterometer high winds

Lekima of 2019 (0809) from VH SAR, 89GHz passive and Kuband.(NOAA,CMA and NSSC) ₃

The development of the scatterometer high wind

C-band scatterometer data sets are adjusted against the airborne radiometer SFMR using a well-explored methodology, in the equation for wind speed larger than 12 m/s:

 $U_{10s}^* = 0.0095 U_{10s}^2 + 1.52 U_{10s} - 7.6$

• Scatterometers are capable for high winds

Rain rate [mm/h]

• Deviation of Ku band winds is due to rain

The development of the scatterometer high wind

Ku band product wind v.s C band adjusted wind

- Improved rain QC in 2020 and 2021
- For model establishment, strict QC in MLE is applied

Results from C-band scatterometer references

- Rain affected Wind Vector Cells excluded by Quality Control (QC) flag.
- Ku-band adjusting model obtained from collocated C-band WVCs (ASCAT-A, ASCAT-B and OSCAT-2):

 $U_{10s}^{*}=-2.421^{*}10^{-5*}U_{10s}^{5}+0.001122^{*}U_{10s}^{4}-0.015^{*}U_{10s}^{3}+0.07096U_{10s}^{2}+0.8604U_{10s}+0.1767$ Results (validation set, in OSCAT-2)

RMSE v.s. speed, Fluctuations due to differences in sample amounts

OVWST 2023

6

Results from C-band scatterometer references

- HY-2B HSCAT validation, Not applied in model derivation;
- Collocated with SFMR;
- Begin assimilation experiments in research aspect

SFMR v.s. Ku band product speed

SFMR v.s. adjusted Ku band speed

(X. Xu, A. Stoffelen, W. Ni, M. Portabella and A. Rabaneda 2023)

2023

Results from C-band scatterometer references

-Case example from TC Man-yi

Existing wind speed is underestimated, established model improves this with more details in eye wall regions, and better consistency with best track information from CMA

CMA best track informaton

IOVWST 2023

Results from C-band SAR references

IOVWST 2023

Example of SAR (Sentinel-1A) collocated with scatterometer (TC LESLIE, 2018)

SAR (Sentinel-1A) collocated with OSCAT-2 winds (2016-10~2019-01, filtered by collocating with ASCAT-A)

Results from C-band SAR references

Established adjusting model

10

Results from C-band SAR references

HY-2B validation (2019, global TC)

Improvement required by:

- Considering smaller scale features in SAR observations and that effects on scatterometer winds
- Increasing data samples

IOV/WST 2023

Conclusions

- Scatterometers are capable for high winds
- Deviation of Ku band winds is due to rain
- Ku-band results from adjusted C-band scatterometer references resolve up to 35 m/s;
- Ku-band results from C-band SAR high wind references aiming at speeds more than 45m/s, is still underdevelopment.

IOVWST 2023

Discussions

Further steps:

- Improve the Ku-band GMF model
- Optimization in combined obserations of both C and Ku band, research on Wind-rad of FY-3E
- Validation in applications

Near shore TC simulation with QuickSCAT and Dualfrequency observations (NOAA)

Key references:

- A. C. M. Stoffelen, "Scatterometry," Ph. D., Utrecht University, 1998. [Online]. Available: https://dspace.library.uu.nl/bitstream/handle/1874/636/full.pdf
- M. K. Ochi, Hurricane-Generated Seas, University of Florida, Gainesville, Florida, USA, Volume 8, 2003
- F. Polverari, M. Portabella, W. Lin, J. W. Sapp, A. Stoffelen, Z. Jelenak, and P. S. Chang"On High and Extreme Wind Calibration Using ASCAT," IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-10, 2022, doi: 10.1109/tgrs.2021.3079898.
- L. Isaksen and A. Stoffelen, 2000: ERS scatterometer wind data impact on ECMWF's tropical cyclone forecasts. IEEE Trans. Geosci. Remote Sens., 38, 1885–1892
- X. Xu and A. Stoffelen, "Improved Rain Screening for Ku-Band Wind Scatterometry," IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 4, pp. 2494-2503, 2020, doi: 10.1109/tgrs.2019.2951726.
- X. Xu and A. Stoffelen, "A Further Evaluation of the Quality Indicator Joss for Ku-Band Wind Scatterometry in Tropical Regions," 2021: IEEE, doi: 10.1109/igarss47720.2021.9553442. [Online]. Available: https://dx.doi.org/10.1109/igarss47720.2021.9553442
- X. Xu, A. Stoffelen, W. Ni, M. Portabella and A. Rabaneda, "Extreme Winds from Ku-Band and C-Band Wind Scatterometers," IGARSS 2023 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 2023, pp. 4064-4067, doi: 10.1109/IGARSS52108.2023.10281803.

IOVWST 2023

ACKNOWLEDGEMENT:

This research is partly supported by the Feng-Yun Application Pioneering Project from China Meteorological Administration (Grant FY-APP-2022.0109).

IOVWST 2023

Thanks!

Xingou Xu, Ad Stoffelen, Weicheng Ni, Marcos Portabella and Alberto Rabaneda <u>Marcos Portabella</u>

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat

O Norwegian Meteorological Institute