QuikSCAT-derived coastal winds

G. Grieco\(^1\) M. Portabella\(^2\) A. Stoffelen\(^3\) J. Vogelzang\(^3\) A. Verhoef\(^3\) S. Zecchetto\(^4\) A. Zanchetta\(^5\)

6\(^{th}\) October 2023

\(^1\) Istituto di Scienze Marine (ISMAR-CNR)
\(^2\) Barcelona Expert Center (ICM-CSIC)
\(^3\) Koninglijk Nederlands Meteorologisch Instituut (KNMI)
\(^4\) Istituto di Scienze Polari (ISP-CNR)
\(^5\) Department of Music - Hong Kong Baptist University
Why coastal winds

• Scientific applications:
 • Weather forecasts (ocean and atmosphere)
 • Coastal dynamics (Diffusion, extreme events such as Acqua Alta, etc.)
 • ...

• Civil applications:
 • Wind farm installation
 • Coastal erosion
 • ...

Scatterometer-derived winds represent the gold standard, but...

Land contamination causing wind biases within ≈ 25 km
SeaWinds on QuikSCAT and ADEOSII

- Ku-band (13.4 GHz)
- Inner beam: H-Pol
- Outer beam: V-Pol
- 4 "views" per each ocean point:
 - H-fore
 - H-aft
 - V-fore
 - V-aft

SeaWinds egg (Inner beam example)

- range filtering
- 8 slices per egg
- slice dimension $\approx 25 \times 8 \text{ km}^2$
- \forall slice, computation of **Land Contribution Ratio** (f):
 \[
 f = \frac{\sum_{xy} L_{xy} S_{xy}}{\sum_{xy} S_{xy}}
 \]
 - L_{xy}: land/sea mask
 - S_{xy}: Spatial Response Function (SRF)

![Diagram showing HH Aft Beam, Satellite Track, egg centroid, slice centroid, coastline, and -3dB contours.]

IOVWST 2023, Nanjing, 30th Nov
Model of land-contaminated σ_0

$$\sigma_0 = (1 - f) \bar{\sigma}_{0,S} + f \bar{\sigma}_{0,L} + \left[(1 - f) \epsilon_S(\sigma_{0,S}) + f \epsilon_L(\sigma_{0,L}) \right]$$

- $\bar{\sigma}_{0,S}$, $\bar{\sigma}_{0,L}$, ϵ_S and ϵ_L are unknown

State of the art

- $\bar{\sigma}_{0,L}$ estimated from the SeaWinds climatological series [1] or enhanced res.algorithm [2]

$$\tilde{\sigma}_{0,S} = \frac{\sigma_0 - f \bar{\sigma}_{0,L}}{1-f}$$

Noise regularization procedure:

1. $\sigma_0 = \bar{\sigma}_{0,S} + \left(\bar{\sigma}_{0,L} - \bar{\sigma}_{0,S} \right) f + \epsilon$ [3]

2. $\bar{\sigma}_{0,f} = a f + \bar{\sigma}_{0,S}$

3. $\bar{\sigma}_{0,f} \rightarrow \hat{K}_p(\bar{\sigma}_{0,f})$

4. CDF matching:
 \[F_{\bar{\sigma}_{0,f},\hat{K}_p,f}(\bar{\sigma}_{0,f}) \equiv F_{\bar{\sigma}_{0,S},\hat{K}_p,S}(\bar{\sigma}_{0,S}) \]

Area test: north Adriatic (Mediterranean basin)

QuikSCAT Full-Resolution file ID 40653
corrected σ_0 with noise regularization

10 km

Venice

12.5°E 13.5°E 14.5°E 15.5°E 16°E
42.5°N
43°N
43.5°N
44°N
44.5°N
45°N
45.5°N
46°N

−0.015
0.000
0.015

LU

outliers
Residual land contamination due to lack of $\sigma_{0,5}$
Retrieval experiments

<table>
<thead>
<tr>
<th>Name</th>
<th>f^{th}</th>
<th>Noise regularization</th>
<th>Orbit IDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL</td>
<td>0.02</td>
<td>NO</td>
<td>40651-40664</td>
</tr>
<tr>
<td>NC</td>
<td>0.5</td>
<td>NO</td>
<td>40651-40664</td>
</tr>
<tr>
<td>NR</td>
<td>0.5</td>
<td>YES</td>
<td>40651-40664</td>
</tr>
</tbody>
</table>

CTRL represents the state-of-the-art at OSI-SAF

- Two area tests: **North Adriatic** (Mediterranean) and **Netherlands**
- Day: 10th April 2007
- WVC grid: 12.5 km
Retrieved winds: North Adriatic
Retrieved winds: Netherlands

CTRL

NC

NR
Sampling rate improvement

w.r.t. CTRL

w.r.t. NC
Envisat ASAR-derived winds

- Wind direction:
 - Method: Deep Learning with Convolutional Neural Network (CCN) with Residual Neural Network structure (ResNet)
 - Configuration: 4 layers, 64 channels
 - Training dataset of 816,000 pairs:
 - 25 Sentinel 1 GRDW IW images
 - ECMWF FC 0.125°

- Wind speed:
 - \(U = C \cdot \text{SarMod}2^{-1}(\sigma_0, \theta) \) (Lu et al. 2018)

ASAR-derived winds

\[\sigma_{0,\text{ASAR}} \]

\[\mathbf{\vec{u}}_{0.9}^{\text{ASAR}} \]
Comparison between QuikScat and Envisat derived winds

\[\mathbf{u}_{\text{ASAR}} \] vs \[\mathbf{u}_{\text{QS}} \]

Black markers: rainy WVCs
Preliminary Conclusions & Future Work

Preliminary conclusions

- σ_0 correction with noise regularization is effective
- Wind retrievals are good, also in internal seas
- Coastal sampling gain: +400% within 5 km and \approx300% within 10 km
- Encouraging agreement with SAR-derived winds

Future work

- MLE threshold tuning
- Assessment of any residual contamination
- Validate winds (how? Against buoys, models, SAR-derived winds?)
- Improve ResNet-derived winds and consistency with QS winds
- Export Noise-Reg to other pencil-beam scats (OceanSat, HY-2)
Acknowledgements

- Project financed by OSI-SAF
 EUMETSAT: OSI_VSA_20_01, OSI_VSA_20_03, OSI_VSA_21_03, OSI_VSA_22_02

- Special thanks to
 - Prof. Dave Long (BYU)
 - Dr. Bryan Stiles and Dr. Roy Scott Dumbar (JPL)
Back-up slides