

Geophysical Fluid Dynamics Group

<u>Coupling in Extreme Winds</u>

Steve Guimond (UMBC) Students: Sydney Sroka (MIT), D. Protzko (UMBC)

Collaborators: NOAA/NESDIS (Joe Sapp/Zorana Jelenak/Paul Chang)

Objectives:

(I) Characterize coherent turbulent structures
(CTS) in the PBL
(2) Role of CTS in ocean-atmosphere coupling; satellite footprint

WRAP Data and Cases

Retrieval Products

Energy Transfer in the Hurricane Boundary Layer

UMBC Mathematical Methodology

Sroka, S. and S.R. Guimond, 2021. Organized kinetic energy backscatter in the hurricane boundary layer from radar measurements. *Journal of Fluid Mechanics, 924*, A21. doi:10.1017/jfm.2021.632

Figure 3. KE spectra for the three radial passes of IWRAP data analysed in this paper.

Energy Transfer Breakdown

Radius (km)

$$\mathcal{P} = -\tau_{ij}\widetilde{S}_{ij}.$$

eophysical Fluid Dynamics Group

Stress Tensor (au) Correlations to ${\mathcal P}$

- Radial-vertical (τ_{13}) 79%
- \circ Azimuthal-vertical (τ_{23}) 49%
- Sign of \mathcal{P} → Sign of τ → Sign of $\partial w/\partial r$ (vertical velocity)

TKE Budgets in HBL

- Energy transfer term ("2P") contributes on average ~ 30% to "eddy scale" time tendency
- Backscatter affects larger-scale waves, which can feed energy to mean flow
- o HBL has large non-conservative effects

The expanded, azimuthally averaged KE transport equation in cylindrical coordinates is $\frac{\partial \tilde{\tilde{q}}^2}{\partial t} + \underbrace{\tilde{\tilde{u}}}_{ADV} \frac{\partial \tilde{\tilde{q}}^2}{\partial r} + \underbrace{\tilde{\tilde{w}}}_{ADV} \frac{\partial \tilde{\tilde{q}}^2}{\partial z} = -2g\tilde{\tilde{w}} \underbrace{-\frac{2}{\rho} \left(\tilde{\tilde{u}} \frac{\partial \tilde{\tilde{p}}}{\partial r} + \tilde{\tilde{w}} \frac{\partial \tilde{\tilde{p}}}{\partial z} \right)}_{PCF} - 2\left[\frac{1}{r} \frac{\partial r\tilde{\tilde{u}}\tau_{rr}}{\partial r} - \frac{\tau_{\theta\theta}\tilde{\tilde{u}}}{r} + \frac{\partial \tilde{\tilde{u}}\tau_{rz}}{\partial z} \right]$ $+ \dots \frac{1}{r^2} \frac{\partial r^2 \tilde{\tilde{v}} \tau_{\theta r}}{\partial r} + \frac{\partial \tilde{\tilde{v}} \tau_{\theta z}}{\partial z} + \frac{1}{r} \frac{\partial r \tilde{\tilde{w}} \tau_{rz}}{\partial r} + \frac{\partial \tilde{\tilde{w}} \tau_{zz}}{\partial z} \bigg] - 2\mathcal{P}, \quad (2.6)$ 2030, KE budget terms B at r = 41.0 km (b)F at r = 38.0 km1.0Height (km) 9.0 (km) 9.0 (km) 0.8 0.6 0.4 0.4 -10-5 5 10 -20-100 0 10 20 Mean removed (c)(d)B at r = 41.0 kmF at r = 38.0 km1.0 1.0Height (km) 0.8 0.8 0.6 0.6 0.4 0.4 0 -22 0

WBC Key Findings for OVWST

- How does kinetic energy (wind) change in the PBL?
 - Turbulence models (Smag, TKE; downscale only)
 - Sroka and Guimond (2021), J. Fluid Mech., 924, A21.
 - HBL contains organized KE backscatter
 - Driven by coherent structures ~ 2 km wavelength
 - Secondary circulations, esp. vertical fluxes
 - Small-scale waves 🗌 Larger-scale waves 🗌 Mean flow
- OVWST applications
 - role of CTS in ocean-atmosphere coupling
 - Currents and ocean mixing
 - Surface fluxes, convection, storm intensity change
 - Relevant for satellite footprints and OVW data

IWRAP Examples - Teddy

Geophysical Fluid Dynamics Group

Tangential Windspeed (m/s), file = 202009171750

UMBC IWRAP Examples - Laura

Geophysical Fluid Dynamics Group

6

