
• First Step: Assuming Neutral Conditions
• The 𝜳𝜳-term goes to 0, so the profiles of u, θ, and q are no 

longer linked – the fitting parameters can be solved directly

• Second Step: For Non-Neutral Cases
• Must consider 𝜳𝜳-term – all three profiles connected
• Use function (Powell Method – SciPy Python library) to 

find fitting parameters from combined model of all three 
profiles by minimizing combined misfit w/ first guesses 
taken from the neutral solutions in the First Step above

• Fitting parameters can be used to find surface fluxes via 
bulk formulae

1. Objectives & Motivation 
• Improve understanding of the structure of the boundary-layer within Tropical 

Cyclones (TCs)
• Identify features that perturbate ‘normal’ profile

• Improve 10m wind speed estimates within TCs
• Better understand intensity near the surface

• Calculate surface fluxes of momentum, sensible heat, and latent heat within a TC
• Improve accuracy of the energy budget
• In-situ measurements often taken from ships (too dangerous to enter hurricanes) or buoys 

(fixed locations – other issues relating to tilting and observation height)
• What about dropsondes?
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4. The Log-Profile of Wind Speed

Speed of 
Surface 
Current

Friction Velocity
• Analogous to transfer of 

momentum
• Proportional to speed

Displacement Height
• Where profile extrapolates to surface value
• Could account for errors in estimated 

surface level
• Dependent on sea state

Height 
Above 
Surface

Von Kármán 
Constant
( ≈ 0.4 ± 0.01 )

Mean Wind Speed 
at Height zi

Roughness 
Length

Stability Term
• Parameterizations from COARE 3.0 used
• Function of u, θ, and q
• 0 in neutral conditions

Note
Similarly formatted profiles exist

for potential temperature (θ)
and specific humidity (q)

We can set the vertical axis 
to a log-scale and easily 

identify layers that are log-
linear. These “log layers” are 
important to the next step.

3. Monin-Obukhov Similarity (MOS)
Theory relating the vertical profiles of wind, potential temperature, and specific humidity 
within the Near-Surface Log Layer (blue shading below) to their respective surface fluxes

• Mean flow is assumed to follow MOS
• Even in high-winds of a TC

• Dropsonde profiles are not snapshots
• As the sondes fall, the space-time 

sampling is often enough to be 
representative of a mean profile

• High winds of a TC require less time 
averaging

• We can apply MOS to single-sonde 
profiles that exhibit a mean

• Deviations from a log layer indicate 
something else going on (gust, spray 
layer, etc.)

2. Current State of Dropsondes

Figure 1. Conceptual model of Boundary Layer

Figure 2. Idealized log-wind profile, displaced upward by wind waves by about 80% of the significant wave height. 
Standard profile on the left. Log-scale profile starting at z = D for the same profile on the right.

• What is a Dropsonde and How is it Used?
• A dropsonde is a device launched from reconnaissance aircraft that contains a 

variety of sensors (position, wind speed, wind direction, temperature, 
humidity, pressure), a transmitter to send data, and a parachute to stabilize 
the device as it falls

• They are used to create vertical profiles of various atmospheric parameters 
and provide in-situ measurements

• Dropsonde measurements used to train algorithm of the Stepped-Frequency 
Microwave Radiometer (SFMR), a device used to produce a swath of wind 
speed beneath a reconnaissance plane as it flies

• Measuring the Wind at 10m from Dropsonde?
• Lowest data points are affected by uncertainties in the height of the surface 

and are typically located within the Roughness Layer (see Figure 1 in the 
next section), where dynamics are dominated by gusts and sea spray

• WL150
• Current standard for 10m wind reporting in TCs
• Layer mean with a reduction coefficient accounting for the height of the layer
• Often misrepresents 10m speeds by combining multiple dynamical regimes

• Is there another way to analyze dropsonde data?

16 in.

2.75 in.

6. Solving the Log-Profiles

5. Quality Control 
• Raw sonde data processed in Atmospheric Sounding Processing Environment

• Automatic quality control procedures
• Manual QC by NOAA/USAF scientists
• Conversion of data into usable file formats

• Manual profile & layer selection
• Must select sondes with usable profiles for u, θ, and q
• All profiles must have an approximately log-linear layer with a minimum of 3 points

7. Selected Results 

Models:

u profile

θ profile

q profile

Minimization Function
Σ[model – observation]2

Observations 
from Log Layer

Fitting 
Parameters

• Eyewall environment 
with similar wind speeds

• Saturated moisture layer 
extends up to ~50m

• Deeper spray layer 
appears to give a 
cushioning effect – stress 
is much lower than 
previous example

• Eyewall environment
• High stress / momentum 

flux (τ)
• Moisture appears 

saturated below 16m –
possibly looking at a 
spray layer

• Normal profile from outer 
vortex

• Fitting parameters seem 
reasonable

• 10m wind more physically 
consistent with profile 
than the measurements 
within a gust at 9-11m

• Surface fluxes produced

Figure 3. Flowchart of program 
functionality
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