

1. Independent Scholar (ATTIC), Selkirk, Scottish Borders, UK (gkinglisboa@gmail.com); 3. School of Marine Sciences, Nanjing University of Information Science and Technology (NUIST), Nanjing, China; 2. Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain (portabella@icm.csic.es); 4. Royal Netherlands Meteorological Institute (KNMI)

CSIC

Correlating extremes in wind divergence with extremes in rain over the Tropical Atlantic

Gregory P King¹, Marcos Portabella², Wenming Lin³ and Ad Stoffelen⁴

		Y		X
		1	0	sums
Х	1	n_{11}	n_{10}	n_{1+}
	0	n_{01}	n_{00}	n_{0+}
Y sums		n_{+1}	n_{+0}	n_{++}

Conclusions

The scattergram showed that the correlation between rain and wind divergence was highly nonlinear. To untangle the scattergram and quantify the correlation we ...

- . Centered our attention on the probability distributions.
- 2. Set thresholds based on the heavy tails of $P(\delta)$, and, for rain rates, from work on methods to classify and separate stratiform from convective rain in satellite reflectivity data from MCSs.
- . Found that the tails of the conditional probability distributions followed power-laws.
- 4. After reducing the joint probability distributions to contingency tables, correlations were quantified by calculating Odds Ratios.

References

- 1. G. Penide, A. Protat, V. V. Kumar, and P. T. May (2013); doi:10.1175/JTECH-D-13-00019.1
- 2. M. Biggerstaff and R. Houze (1991); doi:10.1175/1520-0493(1991)119<3034:KAPSOT>2.0.CO;2
- 3. G. P. King, M. Portabella, W. Lin, A. Stoffelen (2022); doi:10.3390/rs14051147

Further information

