

Suleiman Alsweiss^{1,2}, Zorana Jelenak^{1,3}, Paul S. Chang¹

¹ NOAA/NESDIS/STAR
² Global Science & Technology, Inc. (GST)
³ University Corporation for Atmospheric Research (UCAR)

IOVWST-2022

Introduction

- The Ocean Surface Winds Team at NOAA provides a suite of oceanic environmental data records (EDR) derived from AMSR2 measurements
 - SST, SSW, TPW, CLW, Precipitation, SST anomaly, TPW percentage normal
 - Sampled at 0.1° similar to AMSR2 L1B
- An all-weather wind speed (AWS) product will be added to the collection of AMSR2 EDRs offered by NOAA
 - Provides wind speeds in normal and extreme weather conditions with minimal flagging and excellent accuracy
- A near-real-time demonstration of NOAA's AMSR2 EDRs is available for users
 - https://manati.star.nesdis.noaa.gov/datasets/GCOM2Data.php

Problem Statement: Rain Contamination

- Rain contamination increase measured Tbs
 - Raindrops are more effective emitters than sea surface
 - This problem is particularly noticeable at the tropics where rain-layers are deep
- Rain contamination leads to erroneous retrievals
 - Sea surface winds (SSW) retrievals from radiometers can be within ~1 m/s accuracy but tend to degrade rapidly in the presence of rain

AMSR2 pass over Hurricane Teddy (09/19/2020)

Rain heavily contaminates Tbs observed by AMSR2

AMSR2 Overview

- AMSR2 on board the Global Change Observation Mission-Water (GCOM-W) was launched in May 2012 by the Japanese Aerospace Exploration Agency (JAXA)
 - Passive remote sensing instrument that acquires microwave emission from the Earth's surface and atmosphere at 6.9, 7.3, 10.65, 18.7, 23.8, 36.5, & 89.0 GHz
 - Conically scans Earth's surface at a nominal **incidence angle of 55°** which results in a wide **swath of 1450** km

Freq. (GHz)	6.9	7.3	10.6	18.7	23.8	36.5	89
Polarization	Vertical & horizontal						
Along-track IFOV width (km)	62	58	42	22	26	12	5
Cross-track IFOV width (km)	35	34	24	14	15	7	3

NOAA's AWS Product: Characteristics

- Sensitive to all wind speed regimes including hurricane force winds
 - Trained with 1000 AMSR2 hurricane overpasses
 - Collocated with high resolution (25 km) GDAS
 - Collocated with HWRF (10 km)
- Less susceptible to rain in all weather conditions
 - Rain contamination can be mitigated via the linear combination of different channels
 - AMSR2 observe dual polarized Tbs at multiple frequencies
- Minimal flagging
 - Salvages majority of points in extreme weather events and/or intense rain

NOAA's AWS Product: Model Development (1)

- AMSR2 AWS algorithm is statistical based that relies on 2-stage multiple linear regression
 - Suitable for all weather algorithms to avoid issues with modeling rain
 - Stage-1 regression coeffs. are a function of SST
 - Stage-2 regression coeffs. are a function of wind speed obtained from stage-1
- The algorithm exploits the linear combination of AMSR2 6, 10, and 18 GHz H- & V-pol channels to derive 3 empirical quantities ($\zeta_1, \zeta_2, \& \zeta_3$)
 - Serve as regression independent variables
 - Less susceptible to rain while maintain sensitivity to wind speed
- Regressions were trained with GDAS & HWRF
 - Interpolated temporally & spatially to AMSR2 measurements' location

NOAA's AWS Product: Model Development (2)

Extreme Winds Validation: Composite Plots

- A composite plot is a compound of several snapshots of wind speed retrievals in storms
 - These snapshots are gathered by defining a circle with a specified radius from the center of a storm
 - A storm centric coordinate system
 - The storm-centric snapshots are stacked with the center point being the storm center
 - Statistical analysis can be performed on the stacked snapshots for validation and comparison
 - Different algorithms and/or sensors

Composite Plots: Mean Wind Speed

-400

-400

717 Snapshots from 20[13,14,17,18,1! 700 snapshots used

200

400

Composite Plots: Prob. of Extreme Winds

Standard Validation

Radial Wind Speed Comparison

(knots) Hurrícane ŵ А Storm 53 ம் Víolent மி Storm cc) Gale ŝ c۵. 4 Gale Ā Gale Neg **Beaufort Scale** 2 eez 윘 ഫ്

Examples

Example 2

Conclusions & Future Work

- NOAA's AMSR2 AWS product was briefly described and evaluated
 - Statistical based trained using **1000** AMSR2 orbits from 2013–2021
 - It complements the set of AMSR2 standard satellite data products
 - Global & runs in near-real-time
- Validation results from independent data demonstrated the efficacy of the retrieval algorithm under different wind speed regimes
 - 0 m/s mean bias and < 2 m/s RMS error when compared to numerical weather models
 - Mitigates rain effect under normal and extreme wind events
- Next ...
 - Validation with other wind speed retrievals from satellites and SFMR