Global L-band Observatory for Water Cycle Studies (GLOWS): L-band Active/Passive Ocean Observations

David G. Long, Rajat Bindlish, Giovanni De Amici, Jeffrey Piepmeier, and Mark Bailey

Apr 2022

This poster is presented as a grief sequence of slides describing the GLOWS mission.
L-band Active (Radar) / Passive (Radiometer) Measurements

- SMOS, Aquarius and SMAP have demonstrated the ability to estimate soil moisture, ice, ocean salinity, and ocean winds from space at L-band
 - Radar observations particularly useful for ocean vector wind measurement
 - Higher winds speeds, no rain contamination
 - SMAP had active and passive sensors, but radar failed shortly after launch
 - Low frequency missions expensive due to need for a large parabolic antenna

- No current plans for a future U.S. L-band (1.4 GHz) mission
 - ESA plans low resolution L-band *passive only* mission (CIMR)

- GLOWS addresses the need for new low frequency active/passive L-band mission
 - Follow-on/data continuity for SMAP; augment CIMR
Global L-band Active/Passive Observatory for Water Cycle Studies (GLOWS)

- Similar to SMAP in resolution, coverage, accuracy
 - Lower cost due lens antenna and smaller spacecraft
- Collect array of measurements over a wide swath
 - **Radar**: normalized radar cross-section (σ_0)
 - Transmit pulse, measure echo power
 - Convert power to σ_0 using the *radar equation*
 - **Radiometer**: emitted microwave power (*brightness temperature, TB*)
 - Integrate receive-only power over dwell time
 - Convert to TB
 - Slightly different frequencies to enable simultaneous active and passive observations
Global L-band Active/Passive Observatory for Water Cycle Studies (GLOWS)

- Will employ a deployable L-band 6m membrane transmitarray meta material lens antenna
 - Thin, light-weight, flat, deployable
- Advantages
 - Easier to deploy and rotate
 - Smaller spacecraft

Size comparison

DGL 2020
GLOWS Science
(Active & Passive L-band Measurements)

Soil Moisture
- High-resolution and frequent-revisit
- Understand processes that link the terrestrial water, energy and carbon cycles
- Estimate global water and energy fluxes at the land surface
- Enhance weather, flood and drought prediction

Ocean Surface Salinity
- Ocean circulation governed by salinity + temperature
- Global water cycle: Salinity reflects balance between precipitation and evaporation
- Freshening due to ice melt in Arctic
- Balance between Atlantic and Pacific
- Changes in coastal salinity due to increased run off

Ocean Surface Winds
- Effective in intense tropical cyclones
- L-band not affected by rain or clouds
- L-band does not saturate with wind speed

Vegetation Biomass
- Radar observations provide all-weather vegetation biomass
- Microwaves observations saturate at higher biomass
- Food security and agriculture
- Quantify net carbon flux in boreal landscapes

Thin Sea Ice
- Sea ice thickness up to 0.5 m
- Complementary observations to altimeter - thin sea ice
- Summer melt of sea ice and ice sheets can cause fresh water lenses

Sea Ice

Soil Moisture and SSS from SMAP

Ocean Winds using L-band

DGL 2020