

Global L-band Observatory for Water Cycle Studies (GLOWS): L-band Active/Passive Ocean Observations

David G. Long, Rajat Bindlish, Giovanni De Amici, Jeffrey Piepmeier, and Mark Bailey

Apr 2022

This poster is presented as a grief sequence of slides describing the GLOWS mission

L-band Active (Radar) / Passive (Radiometer) Measurements

- SMOS, Aquarius and SMAP have demonstrated the ability to estimate soil moisture, ice, ocean salinity, and ocean winds from space at L-band
 - Radar observations particularly useful for ocean vector wind measurement
 - Higher winds speeds, no rain contamination
 - SMAP had active and passive sensors, but radar failed shortly after launch
 - Low frequency missions expensive due to need for a large parabolic antenna
- No current plans for a future U.S. L-band (1.4 GHz) mission
 - ESA plans low resolution L-band passive only mission (CIMR)
- GLOWS addresses the need for new low frequency active/passive L-band mission
 - Follow-on/data continuity for SMAP; augment CIMR

DGL 2022

Global L-band Active/Passive Observatory for Water Cycle Studies (GLOWS)

- Similar to SMAP in resolution, coverage, accuracy
 Lower cost due lens antenna and smaller spacecraft
- Collect array of measurements over a wide swath
 - Radar: normalized radar cross-section (sigma0)
 - Transmit pulse, measure echo power
 - Convert power to sigma0 using the radar equation
 - Radiometer: emitted microwave power (brightness temperature, TB)
 - Integrate receive-only power over dwell time
 - Convert to TB
 - Slightly different frequencies to enable simultaneous active and passive observations

Global L-band Active/Passive Observatory for Water Cycle Studies (GLOWS)

- Will employ a deployable L-band 6m membrane transmitarray meta material lens antenna
 - Thin, light-weight, flat, deployable
- Advantages
 - Easier to deploy and rotate
 - Smaller spacecraft

GLOWS Science (Active & Passive L-band Measurements)

 Soil Moi High-resoluti frequent-revi Understand processes the the terrestria energy and o cycles Estimate glob water and en fluxes at the surface 	ion and isit • hat link al water, carbon • bal hergy	 Ocean Surface Salinity Ocean circulation governed by salinity + temperature Global water cycle: Salinity reflects balance between precipitation and evaporation Freshening due to ice melt in Arctic Balance between Atlantic and Pacific Changes in coastal salinity due to increased run off 	 Ocean Surface Winds Effective in intense tropical cyclones L-band not affected by rain or clouds L-band does not saturate with wind speed 	 Vegetation Biomass Radar observations provide all-weather vegetation biomass Microwaves observations saturate at higher biomass Food security and agriculture Quantify net carbon flux in boreal landscapes Thin Sea Ice Sea ice thickness up to 0.5 m
 Enhance weat flood and dro prediction 	· ·			 Complementary observations to altimeter - thin sea ice Summer melt of sea ice and ice sheets can cause fresh water lenses
Soil Moisture and SSS from SMAP Ocean Winds using L-band				

DGL 2020