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Introduction
• Triple collocation analysis is an established technique for calculating linear

intercalibration coefficients and observation error variances when
collocated (in space and time) measurements from three different systems 
are available, using a simple error model.

• Assumptions error model: (1) linear calibration is sufficient, (2) errors are 
independent of the true value, and (3) error correlations are known or 
uncorrelated.

• We extend the formalism to quadruple and higher order collocations and 
apply it to quadruple collocations of buoys, ASCAT-A/B, ScatSat, and 
ECMWF forecasts.

• Paper submitted to JGR, preprint available on ESSOAr, doi 
10.1002/essoar.10505872.1; see the preprint for more detailed
information.

https://www.doi.org/10.1002/essoar.10505872.1


Motivation
• ScatSat was launched by ISRO in 

September 2016 in the same orbital 
plane as ASCAT-A and ASCAT-B, but in a 
slightly lower orbit (see figure).

• As a consequence, it underpasses
ASCAT-A and ASCAT-B about twice a 
week, resulting in a considerable
number of buoy-ASCAT-ScatSat-ECMWF 
collocations.

• Study period 06-10-2016 to 22-07-2017, 
ScatSat data from ISRO, version 1.1.3 
L2A data, processed at KNMI with 
PenWP.

• Also buoy-ASCAT-A/B-ECMWF 
collocations.

ASCAT-ScatSat orbital geometry “from above”

The satellites fly over the poles, all in the same
orbital plane, while the Earth rotates underneath

them



Collocation model (1)
• Suppose that 𝑛𝑛 observation systems make collocated observations in 

time and space (𝑛𝑛 ≥ 3).
• Suppose that linear intercalibration is sufficient. Then the 

measurements 𝑥𝑥𝑖𝑖 made by observation system 𝑖𝑖 (𝑖𝑖 = 1,2, … ,𝑛𝑛) can
be described as

𝑥𝑥𝑖𝑖 = 𝑎𝑎𝑖𝑖 𝑡𝑡 + 𝜀𝜀𝑖𝑖 + 𝑏𝑏𝑖𝑖
with 𝑎𝑎𝑖𝑖 the calibration scaling, 𝑏𝑏𝑖𝑖 the calibration bias, 𝑡𝑡 the signal 
common to all systems (“true signal”) and 𝜀𝜀𝑖𝑖 a random error with 
zero average and variance 𝜎𝜎𝑖𝑖2.

• Take system 1 as calibration reference, so 𝑎𝑎1 = 1 and 𝑏𝑏1 = 0.



Collocation model (2)
• Now take first moments (averages) over all observations, denoted by the 

brackets and set 𝑀𝑀𝑖𝑖 = 𝑥𝑥𝑖𝑖 .
• From this one finds the calibration biases as 𝑏𝑏𝑖𝑖 = 𝑀𝑀𝑖𝑖 − 𝑎𝑎𝑖𝑖𝑀𝑀1 and the 

average of the common signal 𝑡𝑡 = 𝑀𝑀1. So once the calibration scalings 
𝑎𝑎𝑖𝑖 are found, the calibration biases are known. 

• Form second moments 𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖 and use that 𝑡𝑡𝜀𝜀𝑖𝑖 = 0. Forming
covariances 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑖𝑖𝑖𝑖 −𝑀𝑀𝑖𝑖𝑀𝑀𝑖𝑖, introduce the common variance 𝑇𝑇 = 𝑡𝑡2 −
𝑀𝑀1
2, and write 𝑒𝑒𝑖𝑖𝑖𝑖 = 𝜀𝜀𝑖𝑖𝜀𝜀𝑖𝑖 .

• This results in the covariance equations 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖 𝑇𝑇 + 𝑒𝑒𝑖𝑖𝑖𝑖 . These are 
symmetric in their indices.

• The diagonal equations yield the error variances 𝜎𝜎𝑖𝑖2, the off-diagonal
equations the calibration scalings 𝑎𝑎𝑖𝑖 and the common variance 𝑇𝑇 when 
𝑒𝑒𝑖𝑖𝑖𝑖 = 0 is assumed.



Collocation model (3)
• In all cases there are 𝑛𝑛 diagonal equations for solving 𝑛𝑛 error variances 𝜎𝜎𝑖𝑖2.
• For triple collocation (𝑛𝑛 = 3) there are 3 off-diagonal covariance equations 

for determining 𝑎𝑎2, 𝑎𝑎3, and 𝑇𝑇 – precisely as many equations as unknowns.
• For quadruple collocation (𝑛𝑛 = 4) there are 6 off-diagonal covariance 

equations to solve for 4 unknowns 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4, and 𝑇𝑇. There are 15 possible
combinations of selecting 4 equations. Such a combination will be referred
to as a model in what follows.

• Of the 15 quadruple collocation models, 12 have a solution and 3 are 
unsolvable.

• Besides the calibration scalings and common variance, a quadruple
collocation analysis also yields 2 additional error covariances 𝑒𝑒𝑖𝑖𝑖𝑖.

• We will systematically study all possible solutions without attaching a prior 
meaning to the two additional error covariances.



Representativeness errors (1)
• Observation systems generally have different spatio-temporal

sampling characteristics, resulting in so-called representativeness
errors: a system with coarse resolution will miss signal that is 
detected by systems with finer resolutions. This introduces error 
correlations (Stoffelen, JGR 1998).

• Suppose that the systems are ordered according to resolution: system 
1 the finest resolution, system 𝑛𝑛 the coarsest.

• Let 𝑟𝑟𝑖𝑖2 be the representativeness error of system 𝑖𝑖 with respect to 
system 𝑖𝑖 + 1, i.e., the extra variance measured by system 𝑖𝑖 because of 
its finer resolution with respect to system 𝑖𝑖 + 1.

• Modify the covariance equations to ̅𝐶𝐶𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖 − ∑𝑘𝑘=max 𝑖𝑖,𝑖𝑖
𝑛𝑛−1 𝑟𝑟𝑘𝑘2 =

𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖 𝑇𝑇 + 𝑒𝑒𝑖𝑖𝑖𝑖 . This handles the representativeness errors. 



• Representativeness errors may be obtained from differences in spatial
variances, ∆𝑉𝑉(𝑠𝑠), at various scales 𝑠𝑠.

• The figure shows ∆𝑉𝑉(𝑠𝑠) of the three scatterometers w.r.t. the ECMWF 
background. The representativeness error of ASCAT-A w.r.t. ScatSat is the 
vertical difference between the solid and dotted curves – like an energy 
level scheme in quantum mechanics. 

For 𝑢𝑢 (left hand panel), ASCAT-A, ASCAT-B, and ScatSat
have almost the same representativeness errors, so their
differences in representativeness are probably small. 
This indicates that their resolution in 𝑢𝑢 is likely almost
the same.

For v (right hand panel), ScatSat has a lower
representativeness error than the ASCATs, pointing at a 
poorer resolution of ScatSat caused by 2DVAR ambiguity
removal in combination with the Multi Solution Scheme
(which is needed to reduce noise).

Representativeness errors (2)



Results (1a)
• Error variances for buoys, ASCAT-A, ScatSat, and ECMWF (from left to

right) as a function of scale 𝑠𝑠 for the wind components 𝑢𝑢 and 𝑣𝑣.
• Different models may give the same results for a given system, because

they form a triple collocation subset.
• For 𝑢𝑢 the buoy and scatterometer results depend little on the 

representativeness errors (ASCAT and ScatSat representativeness the 
same), only estimated ECMWF errors are affected. Smallest spread 
among models at scales around 200 km.

• For 𝑣𝑣 clear effect, with smallest spread between 100km and 200 km.
• One may assume that the smallest spread represents the best fitting 

error model, hence the best estimate of representativeness error scales



Results (1b)
• For 𝑢𝑢 strongest effect of representativeness error for ECMWF
• Minimum spreading among models for 𝑣𝑣 at scales between 100 km and 200 km



• Buoy/ASCAT-B/ScatSat/ECMWF results.
• Comparable to the previous slide, except that there is no clear minimum 

spreading among the models for 𝑢𝑢, and that the minimum spread for 𝑣𝑣 is at 
scales around 100 km.

• Note that the ASCAT-B error variance in 𝑢𝑢 becomes unrealistically small for
model 7 (dashed curve) at zero scale, i.e., when representativeness is neglected. 
The same applies for a number of models in 𝑣𝑣 when representativeness is 
exaggerated!

• Representativeness or small error correlations are important!

Results (2a)



Results (2b)
• For 𝑢𝑢 strongest effect of representativeness error for ECMWF
• Minimum spreading among models for 𝑣𝑣 at scales around 100 km



• Buoys/ASCAT-A/ASCAT-B/ECMWF results.
• Small spread among models.
• Representativeness not important (because it is almost the same for

ASCAT-A and ASCAT-B), except for ECMWF.
• Results for error variances agree with those from simulated data (see

preprint for the simulations)
• ASCAT-A and ASCAT-B provide independent measurements, but are 

very consistent

Results (3a)



Results (3b)
• Little effect of representativeness error, except for ECMWF



Discussion (1)
• What about the two additional error covariances?

The additional covariances bear no relation with the representativeness
errors, because these appear in more than two error covariances.

• But you only need 𝑟𝑟22 and 𝑟𝑟32! Can’t you modify the error model?
Yes, that is possible, but the resulting solution is numerically so unstable that 
it has no practical use. See Appendix C of the preprint for more information.

• What then is the use of a quadruple collocation analysis?
It clearly shows the consistency of the underlying error model. The spreading
in the results shows that the error model is not perfect. Yet, the spreading is 
not dramatically large when representativeness is included properly and thus
gives a good indication of the reliability of the results.



Triple collocation subresults

Subset
Buoys ASCAT-A ScatSat ECMWF

𝝈𝝈𝒖𝒖 𝝈𝝈𝒗𝒗 𝝈𝝈𝒖𝒖 𝝈𝝈𝒗𝒗 𝝈𝝈𝒖𝒖 𝝈𝝈𝒗𝒗 𝝈𝝈𝒖𝒖 𝝈𝝈𝒗𝒗
bAS 1.03 1.12 0.41 0.49 0.78 0.65 -- --

bAE 1.06 1.15 0.34 0.41 -- -- 0.94 1.03

bSE 1.09 1.21 -- -- 0.72 0.59 0.92 1.03

ASE -- -- 0.43 0.49 0.76 0.65 0.90 0.98

range 0.06 0.09 0.09 0.08 0.06 0.06 0.04 0.05

b: buoys
A: ASCAT-A
S: ScatSat
E: ECMWF

• Error variances (in m2/s2) from triple collocation
• Representativeness errors from spatial variances at 200 km for 𝑢𝑢 and 100 km for 𝑣𝑣
• The range (bottom row) gives the range in the values of the error variances

• Results consistent within 0.05 m2/s2

• Same consistency for buoys/ASCAT-B/ScatSat/ECMWF and buoys/ASCAT-A/ASCAT-B/ECMWF



Conclusions
• The quadruple collocation problem can be solved in 12 ways
• The additional two error variances are of little use, except when one 

knows in advance which error correlations can safely be neglected
• Representativeness errors are important, but must be estimated 

using a different method
• Differences between the 12 solutions indicate imperfections in the

error model; however, in this study the error model is consistent 
within 0.05 m2/s2 for the error variances of the instruments
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