

HY-2B and HY-2C winds and services from the OSI SAF

Anton Verhoef, Ad Stoffelen, Rianne Giesen (KNMI)

Juhong Zou (NSOAS)

Zhixiong Wang (NUIST)

Simon Elliott (EUMETSAT)

David Long (BYU)

IOVWST virtual meeting 2021

Outline

- > Introduction
- > Data reception and timeliness
- > Wind processing, coverage and data distribution
- > Comparisons with Numerical Weather Prediction and buoy winds
- > Outlook
- > Conclusions

Introduction

- > Haiyang 2B (HY-2B) was launched on 25 October 2018 in a sun-synchronous orbit with a local time of descending node at 6:00
- Haiyang 2C (HY-2C) was launched on 21 September 2020 in a drifting orbit with 66° inclination (providing winds between 73°S and 73°N)
- Both satellites carry a Ku-band pencil beam scatterometer similar to SeaWinds and OSCAT
- Both satellites are operated by the Chinese National Satellite Ocean Application Service (NSOAS)
- We are very grateful for receiving the data following agreements between EUMETSAT and NSOAS

HY-2B data reception and timeliness

- KNMI receives Level 1b data in near-real time through a EUMETCast terrestrial link from EUMETSAT
- > Data are processed in near-real time since 28 January 2019
- Each day 5-7 orbits are received through a polar ground station in Sodankylä, Finland; this is set-up with EUMETSAT and NSOAS and it significantly enhances the timeliness
- 90% of the data is received within 9 hours (compare this graph with the HY-2C one on the next slide)
- The HY-2B local time of Equator crossing of the polar orbit is 6:00 (vs. ASCAT 9:30 and ScatSat-1 8:45)

HY-2C data reception and timeliness

- > KNMI receives Level 1b data from NSOAS in near-real time through an FTP link
- > Data are processed in near-real time since 12 November 2020
- No polar ground stations are used and the timeliness varies between 1.5h and 17h
- > 90% of the data is received after 15 hours

Wind processing

- > Level 2 wind products are created with 25 km and 50 km swath grid spacing
- The processing algorithms for the wind processing are to a great extent based on the algorithms as developed in the OSI SAF and NWP SAF for earlier Ku-band scatterometers, and have been improved in close cooperation with colleagues from China
- > The OSI SAF Pencil Beam Wind Processor (PenWP) is used
- Fixed HH and VV backscatter corrections are applied to obtain wind speed biases vs. ECMWF as low as possible
- The NSCAT4DS Geophysical Model Function is used which is derived from NSCAT4 with improved wind speed response and direction modulation
- Backscatter values are corrected for Sea Surface Temperature (SST), the correction is a function of polarization, wind speed, SST, and incidence angle

Data coverage

 HY-2B has the 'classic' pole-to-pole coverage (left) whereas HY-2C covers latitudes between 73°S and 73°N (right) and varying local overpass times – both plots show ascending passes over 1 day

Data distribution

- The data are processed into OSI SAF level 2 swath wind products which are available on a restricted FTP server
- The level 2 data are available now for European meteorological services and members of the HY-2B/C cal/val project following agreements between EUMETSAT and NSOAS
- The winds are visualised on the OSI SAF winds website at KNMI: <u>https://scatterometer.knmi.nl/</u>
- The HY-2B winds are available as daily gridded level 3 data to the general public in the Copernicus Marine Environment Monitoring Service (CMEMS) <u>https://marine.copernicus.eu/about-us/about-producers/wind-tac/</u>

CMEMS data preview

- > HY-2B winds and related parameters like wind stress, curl, divergence on a regular lat/lon grid (0.25° or 0.50°) are available for download or preview
- The data are organized in daily files, separate for ascending and descending passes
- > HY-2C will follow later

Scatterometer winds compared to ECMWF

- The contour plots show the HY-2 speed, direction, u, and v component vs. ECMWF operational stress equivalent forecast winds
- The plots for HY-2B look very similar
- The results look very good, comparable to those from other Ku-band instruments

Scatterometer winds compared to ECMWF

- The table shows biases and standard deviations of three scatterometers vs. ECMWF stress-equivalent forecast winds
- All numbers are from the same date (12 October 2020) and in all cases the NSCAT4DS geophysical model function and SST backscatter corrections were used
- > The wind products of the three instruments show comparable performance
- > HY-2C has a different latitude distribution of the observations due to its orbit characteristics, this may influence the statistics slightly

	HY-2B	HY-2C	ScatSat-1
Wind speed bias	0.07	-0.01	-0.12
Stdev u	1.13	1.18	1.16
Stdev v	1.08	1.15	1.10
Stdev wind dir	8.80	9.83	9.28

Scatterometer winds compared to buoys

- The table shows biases and standard deviations of three scatterometers vs. winds from moored buoys
- > All numbers are from the same period (June November 2020)
- > No buoy collocations are available yet for HY-2C
- HY-2B seems to perform slightly better than ScatSat-1, however for ScatSat-1 > the older NSCAT4 GMF was used instead of NSCAT4DS and no HY-2B ScatSat-1 HY-2C SST corrections were applied, this Wind speed bias -0.18N/A -0.20probably has a detrimental effect Stdev *u* 1.51 N/A 1.60 on the standard deviations

Stdev v

Stdev wind dir

1.52

16.65

N/A

N/A

1.61

18.85

Conclusions

- HY-2B and HY-2C winds are regularly processed at KNMI in near-real time, the > data quality is very good, comparable to similar Ku-band instruments
- > The timeliness varies between ~ 1.5 and ~ 17 hours, as expected for a data downlink twice per day, for HY-2B it is better thanks to the use of a polar ground station
- Near-real time ocean and weather users would benefit much from the winds if > they were available in a timelier fashion, cf. WMO requirements of 1-3 hours https://www.wmo-sat.info/oscar/variables/view/wind_vector_near_surface
- HY-2B/C winds generated in the OSI SAF show very good statistics as compared > to ECMWF and buoy winds
- The HY-2C satellite orbit is, contrary to most other scatterometer missions, not > sun-synchronous; this will provide regular collocations with all other instruments currently in orbit

Outlook

- > HY-2C winds will be added to the multi platform product viewer on the OSI SAF winds website: <u>https://scatterometer.knmi.nl/tile_prod/</u>
- There are some missing winds in the HY-2C products at the end/start of new orbits, probably due to a shortcoming in the processor at KNMI, this will be further investigated

- The HY-2C orbit is not sun-synchronous, this opens the opportunity to compare the winds to other C-band and Ku-band instruments
- We plan to further validate the winds and move to an operational product status in the OSI SAF

Outlook

- David Long has kindly provided software for enhanced resolution processing of HY-2B and HY-2C sigma0 data using the Scatterometer Image Reconstruction (SIR) algorithm
- This software generates backscatter images on a 4.45 km grid
- We are evaluating the software and assess its usability to enhance ice and wind processing

