Analyzing Gaps in Hurricane Rain Coverage to Inform Future Satellite Proposals

Justin Stow1,2
Committee: Mark A. Bourassa1,2, Heather Holbach2,4, Vasubandhu Misra1,2, Monica Hurdal3

IOVWST Meeting

1Department of Earth, Ocean, and Atmospheric Sciences, Florida State University, Tallahassee, FL
2Center for Ocean-Atmospheric Prediction Studies, 2000 Levy Ave., Building A, Suite 292, Tallahassee, FL
3Department of Mathematics, Florida State University, Tallahassee, FL
4Hurricane Research Division, Miami, FL
Motivation

- Remote sensing has become an increasingly popular way to estimate properties of various meteorological and oceanographic phenomena (precipitation, SSTs, surface winds, ocean currents)
- Accurate tropical cyclone (TC) forecasting requires high-resolution surface observations from operational aircraft and satellites
- Determine if already proposed satellite mission can be used for this application
- Distribution of gap sizes in moderate to heavy rainbands that circulate around the main low pressure center has not been studied in this context

Satellite Mission Concept

- One such mission is a satellite to measure high resolution surface winds and currents
- There are a range of instrument design options that could be used to achieve the main scientific goals
 - Resolution
 - Accuracy
 - Coverage
Winds and Currents Mission

- Rodriguez et al. (2019) demonstrated WaCM measures ocean winds and surface currents accurately
 - Winds: observed by radars
 - Currents: police radar gun method (speed of ripples)
 - Wide swath & fast sampling = less aliasing of time-averaged currents and derivatives
 - Mitigate noisier single-pass measurements

Comparison of WaCM and SWOT Measurement Swaths
(Bourassa and others 2019, Chelton et al. 2019)

WaCM Measurement Concept - pencil-beam Doppler scatterometers measuring winds from Ka or Ka/Ku sigma signals at multiple azimuth angles (Bourassa and others 2019)
Objectives

Determine instrument design characteristics that allow the satellite concept mission (e.g. Winds and Currents Mission (WaCM) & Sea surface Kinematics Multiscale monitoring (SKIM)) to offer knowledge of surface under tropical cyclones (ocean vector winds, oceanic surface currents, waves, etc.).

These characteristics depend on knowledge of:

a. Rainband gaps (areas through which a satellite can see surface)
b. How these gaps change depending on type of storm
Data Used: NOAA Aircraft Radar

- Aircraft: NOAA’s WP-3D Turboprop (N42RF, N43RF)
- Radar: Lower Fuselage (LF)
- LF radar system changed in 2018, using old system here
- Calculations in plane-relative coordinates
- HRD’s MATLAB function converted to Python for plotting and numerical calculations
- Benefits:
 - Data availability
 - Resolution
 - Spatial coverage

WP-3D N42RF NOAA aircraft containing flight-level data sensors, airborne radars, remote sensors, and cloud physics instrumentation (HRD 2014)

Single Lower Fuselage Sweep of Hurricane Harvey (HRD 2018)
Estimating Rain Rates

- Simple rainrate used as proxy for columnar integrated rain rate
- Assumed constant height column reflectivity up to freezing level
 - Verified by HRD Tail Doppler (TDR) imagery
- LF radar measures in reflectivity (dBz) of clouds/precipitation
- Applied Marshall-Palmer conversion formula based on commonality and easy computation
- Apply chosen thresholds to computed rates to determine rain-free regions

Marshall-Palmer Conversion Formula
(Marshall, Langille, and Palmer 1947)

\[RR = \left(\frac{10^{(dBz/10)}}{200} \right)^{0.625} \]
Case Study Selection

- Ignore viewing angle (“looking straight down”)
- Selected input parameters to test:
 - Footprint Sizes: 1.375, 2.75, 4.125, 5.5 km
 - Viewing Areas: 2.75, 5.5, 8.25, 11 km
 - Rainrate Thresholds: 0.1 - 10.0 mm/hr (Draper and Long 2004)
- Incorporated storms with varying environmental stresses (wind shear, moisture influx, dry air intrusions)
- Rationale:
 - *Harvey*: rapid intensification, slight land interference, radiofrequency interference
 - *Irma, Maria*: symmetric, weak vertical wind shear, large/strong storms
 - *Jose, Nate*: antisymmetric, strong vertical wind shear, relatively smaller/weaker storms

<table>
<thead>
<tr>
<th>Storm</th>
<th>Date, Time (UTC)</th>
<th>Vmax (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL092017 Harvey</td>
<td>Aug. 25th, 2017 16:54:53</td>
<td>112</td>
</tr>
<tr>
<td>AL112017 Irma</td>
<td>Sept. 5th, 2017 9:45</td>
<td>171</td>
</tr>
<tr>
<td>AL122017 Jose</td>
<td>Sept. 18th, 2017 1:57:11</td>
<td>92</td>
</tr>
<tr>
<td>AL142017 Maria</td>
<td>Sept. 24th, 2017 8:14:29</td>
<td>94</td>
</tr>
<tr>
<td>AL152017 Nate</td>
<td>Oct. 7th, 2017 10:48:44</td>
<td>82</td>
</tr>
</tbody>
</table>
Viewing Area Structures

Shapes of constructed viewing areas with diameters: (a) 2.75, (b) 5.5, (c) 8.25, and (d) 11 km

- Coarse resolution prevents perfect circular shape
- Loop through each radar sweep to determine rainfree areas & observable areas
- Ensured each part of footprint remained on radar sweep & rain-free
0.1 mm/hr Threshold (Ka-Band)

2.75 km Footprint

4.125 km Footprint

5.5 km Footprint

0.1 mm/hr rainrate threshold applied to reflectivity data for Maria (September 24th, 2017 8:14:29 UTC) with three shades:
- **blue**: rainrate threshold met and surface observable
- **yellow**: rainrate threshold met but surface not observable,
- **red**: rainrate threshold not met and surface not observable
0.6 mm/hr Threshold (Ku-Band)

2.75 km Footprint

4.125 km Footprint

5.5 km Footprint

0.6 mm/hr rainrate threshold applied to reflectivity data for Maria (September 24th, 2017 8:14:29 UTC) with three shades:

- blue: rainrate threshold met and surface observable
- yellow: rainrate threshold met but surface not observable,
- red: rainrate threshold not met and surface not observable
8.0 mm/hr Threshold (C-Band)

8.0 mm/hr rainrate threshold applied to reflectivity data for Maria (September 24th, 2017 8:14:29 UTC) with three shades:
- blue: rainrate threshold met and surface observable
- yellow: rainrate threshold met but surface not observable,
- red: rainrate threshold not met and surface not observable
Lower Fuselage Reflectivity
Hurricane Jose - Valid: 2017-09-18 01:57:11 UTC
0.1 mm/hr Threshold (Ka-Band)

2.75 km Footprint

4.125 km Footprint

5.5 km Footprint

0.1 mm/hr rainrate threshold applied to reflectivity data for Jose (September 18th, 2017 1:57:11 UTC) with three shades:

- **blue**: rainrate threshold met and surface observable
- **yellow**: rainrate threshold met but surface not observable,
- **red**: rainrate threshold not met and surface not observable
0.6 mm/hr Threshold (Ku-Band)

2.75 km Footprint

0.6 mm/hr RR Threshold using 2.75km Footprint
Hurricane Jose - Valid: 2017-09-18 01:57:11 UTC

4.125 km Footprint

0.6 mm/hr RR Threshold using 4.125km Footprint
Hurricane Jose - Valid: 2017-09-18 01:57:11 UTC

5.5 km Footprint

0.6 mm/hr RR Threshold using 5.5km Footprint
Hurricane Jose - Valid: 2017-09-18 01:57:11 UTC

0.6 mm / hr rainrate threshold applied to reflectivity data for Jose (September 18th, 2017 1:57:11 UTC) with three shades:

- **blue**: rainrate threshold met and surface observable
- **yellow**: rainrate threshold met but surface not observable,
- **red**: rainrate threshold not met and surface not observable
8.0 mm/hr Threshold (C-Band)

8.0 mm/hr rainrate threshold applied to reflectivity data for Jose (September 18th, 2017 1:57:11 UTC) with three shades:
- **blue**: rainrate threshold met and surface observable
- **yellow**: rainrate threshold met but surface not observable,
- **red**: rainrate threshold not met and surface not observable
Rain Contamination Assessment

Percentage of Rain Contamination (Serious and Side Lobe) using 2.75 km Footprint.

<table>
<thead>
<tr>
<th>Storm</th>
<th>Ka-Band (%)</th>
<th>Ku-Band (%)</th>
<th>C-Band (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvey</td>
<td>38.581414</td>
<td>16.802261</td>
<td>0.162331</td>
</tr>
<tr>
<td>Irma</td>
<td>29.070700</td>
<td>11.328826</td>
<td>0.196707</td>
</tr>
<tr>
<td>Jose</td>
<td>38.411000</td>
<td>22.161955</td>
<td>0.003819</td>
</tr>
<tr>
<td>Maria</td>
<td>34.110363</td>
<td>13.342632</td>
<td>0.017196</td>
</tr>
<tr>
<td>Nate</td>
<td>27.912528</td>
<td>12.463712</td>
<td>0.042016</td>
</tr>
</tbody>
</table>

Percentage of Rain Contamination (Serious and Side Lobe) using 5.5 km Footprint.

<table>
<thead>
<tr>
<th>Storm</th>
<th>Ka-Band (%)</th>
<th>Ku-Band (%)</th>
<th>C-Band (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvey</td>
<td>49.448073</td>
<td>26.607081</td>
<td>1.455253</td>
</tr>
<tr>
<td>Irma</td>
<td>36.929452</td>
<td>16.460049</td>
<td>1.388411</td>
</tr>
<tr>
<td>Jose</td>
<td>45.859434</td>
<td>29.893048</td>
<td>0.928189</td>
</tr>
<tr>
<td>Maria</td>
<td>42.825206</td>
<td>20.779195</td>
<td>0.970651</td>
</tr>
<tr>
<td>Nate</td>
<td>35.166157</td>
<td>17.910618</td>
<td>1.048510</td>
</tr>
</tbody>
</table>

Percentage of Rain Contamination (Serious and Side Lobe) using 8.25 km Footprint.

<table>
<thead>
<tr>
<th>Storm</th>
<th>Ka-Band (%)</th>
<th>Ku-Band (%)</th>
<th>C-Band (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvey</td>
<td>51.974714</td>
<td>28.971391</td>
<td>2.127497</td>
</tr>
<tr>
<td>Irma</td>
<td>39.058859</td>
<td>18.156296</td>
<td>2.033917</td>
</tr>
<tr>
<td>Jose</td>
<td>47.729182</td>
<td>31.860198</td>
<td>1.478227</td>
</tr>
<tr>
<td>Maria</td>
<td>45.089422</td>
<td>22.896285</td>
<td>1.534316</td>
</tr>
<tr>
<td>Nate</td>
<td>37.226890</td>
<td>19.619938</td>
<td>1.629106</td>
</tr>
</tbody>
</table>

Percentage of Rain Contamination (Serious and Side Lobe) using 11.0 km Footprint.

<table>
<thead>
<tr>
<th>Storm</th>
<th>Ka-Band (%)</th>
<th>Ku-Band (%)</th>
<th>C-Band (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvey</td>
<td>61.678316</td>
<td>37.254115</td>
<td>4.066482</td>
</tr>
<tr>
<td>Irma</td>
<td>47.387418</td>
<td>24.137733</td>
<td>3.697337</td>
</tr>
<tr>
<td>Jose</td>
<td>54.436592</td>
<td>38.294499</td>
<td>2.759740</td>
</tr>
<tr>
<td>Maria</td>
<td>53.691531</td>
<td>30.157062</td>
<td>2.875649</td>
</tr>
<tr>
<td>Nate</td>
<td>45.261650</td>
<td>25.412528</td>
<td>3.048128</td>
</tr>
</tbody>
</table>
Conclusions

OBJECTIVE: Determine characteristics that improve present WaCM satellite technologies

- Largest 5.5 km footprint does provide sufficient rain-free coverage in the eye to make practical conclusions about intensity changes, but substantially more coverage would occur with smaller footprints

- Control variables (rainrate threshold, footprint size, case study) independent of TC structure

- Ideal parameters: > 0.6 mm/hr threshold, footprint size < 4.125 km, highly sheared system
 - Compromise between spatial resolution and penetrating power given current technologies
 - Produced least sensitivity to aforementioned biases
 - More power with smaller footprints
 - Big antenna and longer wavelength (C-band) are preferred for hurricane wind research, though it is more expensive to achieve the desired resolution at such wavelengths
Acknowledgements:
This undergraduate research assistantship was supported by NOAA’s Global Ocean Monitoring and Observing Program via the Northern Gulf of Mexico Cooperative Institute managed by Mississippi State University. I would also like to thank the Hurricane Research Division/AOML for granting access to LF and TDR radar data, Risk Management Solutions HWind for access to their QC Application, operational data platforms, and HWind database to construct historical reanalysis snapshots. A special thanks is also given to his committee members, Drs. Mark Bourassa, Heather Holbach, Vasubandhu Misra, and Monica Hurdal, as well as the Marine Data Center research team at COAPS for assistance in all elements of this project.
References

