

AN ANALYSIS OF THE NEAR-SURFACE LAYER IN HURRICANES USING DROPSONDES

Daniel E. Wallace¹, Mark A. Bourassa¹, Heather M. Holbach² ¹EOAS & COAPS, Florida State University ²FSU, Northern Gulf Institute (NGI), NOAA/AOML/HRD

GPS DROPSONDE

- Square-Cone Parachute Increases stability of dropsonde
- Shock Cord

Reduces stress when chute opens

- **GPS Receiver & Antenna** Uses GPS satellites to calculate position, wind speed / direction
- Pressure Sensor
- **Temperature & Humidity Sensors**
- Microprocessor

Controls the transmitter; digitizes data

- Battery
- Radio Transmitter

Sends data back to aircraft every 0.25 seconds (0.5 s for some data)

(NCAR 2020)

BOUNDARY LAYER

Outer Layer (†)

• Ekman layer up to top of boundary layer

Near-Surface Log Layer (-)

- Log-linear layer just above surface layer
- Mean flow follows Monin-Obukhov similarity (MOS)

Lowest Inner Layer (\downarrow)

- Viscous Sublayer + Buffer Layer
- Greatly affected by gusts and sea spray
- Inconsistent Wind Profile
 - 10m measurements often unreliable

10-METER WIND

MBL-500 (light gray box)

- Mean Boundary Layer method: average velocity (lower 500m) multiplied by reduction coefficient
- $U_{10} = 45.6 \text{ ms}^{-1}$ in example at right by MBL-500 method

WL150 (<mark>gold</mark> box)

- Average velocity (lower 150m) multiplied by reduction coefficient
- $U_{10} = 41.8 \text{ ms}^{-1}$ in example at right by WL150 method

Log Profile (garnet estimated trendline)

- Log profile in log-linear layer extrapolated down
- Example at right extrapolates to $\sim 32 \text{ ms}^{-1}$ at 10m

SOLVING FOR THE LOG PROFILE (NEUTRAL CONDITIONS)

$$U_i = \frac{u_*}{k_v} \ln \left| \frac{z_i - D}{z_0} \right|$$

$$\begin{aligned} z_{o} &= exp \left[\hat{A} - \frac{k_{v}}{u_{*}} (\hat{u}_{obs} - u_{sfc}) \right] & \frac{k_{v} = 0.4 \pm 0.02}{a_{i} = A_{i} - \hat{A}} \\ u_{*} &= \frac{k_{v} \sum_{i}^{N} [U_{i}a_{i}]}{\sum_{i}^{N} [a_{i}^{2}]} & \frac{U_{i} = u_{obs_{i}} - \hat{u}_{obs}}{A_{i} = \ln(z_{i} - D)} \end{aligned}$$

$$U_i = u_{obs_i} - u_{obs}$$
$$A_i = \ln(z_i - D)$$

BREAKDOWN

What we have:

- Observation points for u, the measured wind speed
- *Observation points for z,* the measured height
- Assumed surface wind speed of $u_{sfc} = 0$
- Von Kármán constant, k,

What we need:

Displacement height, D (more on this on next slide)

What we can do:

Calculate u_* *and* z_0 *to fit* the observational data to a log profile equation

DISPLACEMENT HEIGHT (D)

Importance of D

- Represents level that log profile extrapolates to zero (not necessarily the axis)
- Dependent on sea state over ocean
 - Roughness
 - Swell height
 - Sea spray

Guess + Test to find D

- Test Range: $[-LL_{low}, +LL_{low}]$ $LL_{low} = the lowest point (<math>\bigcirc$) of user-identified log layer (\frown)
- Use test value for D to solve log profile
 - Compare to measured points
 - Calculate square of residual for each point
 - Repeat for entire range with 0.001m steps
 - D with the lowest sum of the squares of the residuals (across all points) will be selected

CONFIDENCE CHECK OF CALCULATIONS

Ideal Log Profile Created

- Z = 16m to 40m w / 2m steps
- $D = 5.237 \text{ m}; u_* = 1.75; z_0 = 0.001 \text{ m}$ (arbitrarily selected to create profile)
- $U_Z = \frac{u_*}{k_v} \ln\left[\frac{Z-D}{Z_0}\right]$

Test Equations with Idealized Data Points

- Plug in data points from created profile
- Solve for D, u_* , and z_0

Results from Calculations

- D = 5.24 m
- $u_* = 1.7497$
- $z_0 = 0.000998 \ m$
- All three values are incredibly close to the input values. Slight differences attributed to rounding errors in the calculation. Calculations seem to work!

Ideal Wind Profile

EXAMPLE PROFILES WITH AN IDENTIFIABLE LOG LAYER

Sonde #g102815174 • D = -0.20 $u^* = 2.239$ **3. RESULTS** z0 = 0.1502 $U_{10} = 23.6 \text{ ms}^{-1}$ Sonde #g103515143 • D = 5.44 $u^* = 1.911$ z0 = 0.0223 $U_{10} = 25.4 \text{ ms}^{-1}$ Sonde #g103125312 •

D = 0.90 $u^* = 4.769$ $z_0 = 0.693$ $U_{10} = 30.7 \text{ ms}^{-1}$

EXAMPLE PROFILES WITHOUT AN IDENTIFIABLE LOG LAYER

Why do these not work?

- No easily-identifiable linear sections on a log-scale
- Some apparent missing data at lower levels
- Equations require a section of clearly log-linear points in order to fit data to a neutral solution

Why the non-linearity?

- Possible non-neutral conditions
- Interference from gusts
- Effect of sea spray

ANALYSIS OF LOG PROFILE METHOD

Produces reasonable 10m wind speeds

- WL150 and MBL500 are layer means that often misrepresent 10m speeds
- 10m measurements are often representative of gusts as opposed to sustained winds

Produces flux parameters (u_* and z_0)

• Provide a good fit to data (where a log layer can be identified)

FUTURE

Neutral Conditions

- Start evaluating stress using u_* and z_o
- Expand equations to solve for heat and moisture parameterizations
 - q_* and $z_{0,q}$ used for moisture flux
 - θ_* and $z_{0,\theta}$ used for heat flux

Non-Neutral Conditions

• Consider stability parameters and reevaluate all equation sets for non-neutral cases by considering perturbations from neutral cases

References

Bakker, A., 2006: Applied Computational Fluid Dynamics Lecture 11 – Boundary Layers and Separation.

http://www.bakker.org/dartmouth06/engs150/11-bl.pdf (Accessed December 31, 2020).

Bourassa, M. A., 2020: Solving Log Wind Profile v5. Center for Ocean-Atmospheric Prediction Studies (COAPS) at Florida State University,. Foster, R., and J. Patoux, 2012: Using Surface Pressure to Improve Tropical Cyclone Surface Wind Retrievals from Synthetic Aperture Radar Imagery. WASHINGTON UNIV SEATTLE APPLIED PHYSICS LAB, https://apps.dtic.mil/sti/citations/ADA590606 (Accessed December 6, 2020).

NCAR, 2020: What is a Dropsonde? *Earth Obs. Lab.*, https://www.eol.ucar.edu/content/what-dropsonde. Stull, R. B., 1988: *An introduction to boundary layer meteorology*. Kluwer Academic Publishers,.

CONTACT

Daniel Wallace: <u>dwallace@coaps.fsu.edu</u>

Mark Bourassa: bourassa@coaps.fsu.edu

Heather Holbach: <u>heather.holbach@noaa.gov</u>

Please feel free to reach out with any questions

WEBSITES

- Department of Earth, Ocean & Atmospheric Science at FSU: <u>eoas.fsu.edu</u>
- Center for Ocean-Atmospheric Prediction Studies at FSU: <u>coaps.fsu.edu</u>
- Northern Gulf Institute (NOAA Cooperative) at MSU: <u>northerngulfinstitute.org</u>
- NOAA Atlantic Oceanographic and Meteorological Laboratory Hurricane Research Division: <u>aoml.noaa.gov/hrd</u>