An Analysis of the Near-Surface Layer in Hurricanes Using Dropsondes

Daniel E. Wallace¹, Mark A. Bourassa¹, Heather M. Holbach²

¹EOAS & COAPS, Florida State University ²FSU, Northern Gulf Institute (NGI), NOAA/AOML/HRD
GPS DROPSONDE

- **Square-Cone Parachute**
 Increases stability of dropsonde

- **Shock Cord**
 Reduces stress when chute opens

- **GPS Receiver & Antenna**
 Uses GPS satellites to calculate position, wind speed / direction

- **Pressure Sensor**

- **Temperature & Humidity Sensors**

- **Microprocessor**
 Controls the transmitter; digitizes data

- **Battery**

- **Radio Transmitter**
 Sends data back to aircraft every 0.25 seconds (0.5 s for some data)

FALL RATE
Approx. 16 ms⁻¹
(at 6000 m)
Approx. 11 ms⁻¹
(at sea level)

(a drop from 6000m takes about 7 minutes)

1. **BACKGROUND**

(© NCAR 2020)
BOUNDARY LAYER

Outer Layer (↑)
- *Ekman layer up to top of boundary layer*

Near-Surface Log Layer (–)
- *Log-linear layer just above surface layer*
- *Mean flow follows Monin-Obukhov similarity (MOS)*

Lowest Inner Layer (↓)
- *Viscous Sublayer + Buffer Layer*
- *Greatly affected by gusts and sea spray*
- *Inconsistent Wind Profile*
 - 10m measurements often unreliable
10-METER WIND

MBL-500 (light gray box)
- Mean Boundary Layer method: average velocity (lower 500m) multiplied by reduction coefficient
- $U_{10} = 45.6 \text{ ms}^{-1}$ in example at right by MBL-500 method

WL150 (gold box)
- Average velocity (lower 150m) multiplied by reduction coefficient
- $U_{10} = 41.8 \text{ ms}^{-1}$ in example at right by WL150 method

Log Profile (garnet estimated trendline)
- Log profile in log-linear layer extrapolated down
- Example at right extrapolates to ~ 32 ms^{-1} at 10m
SOLVING FOR THE LOG PROFILE
(NEUTRAL CONDITIONS)

\[U_i = \frac{u_*}{k_v} \ln \left[\frac{z_i - D}{z_0} \right] \]

\[z_0 = \exp \left[\hat{A} - \frac{k_v}{u_*} (\hat{u}_{obs} - u_{sfc}) \right] \]

\[u_* = \frac{k_v \sum_i^N [U_i a_i]}{\sum_i^N [a_i^2]} \]

\[k_v = 0.4 \pm 0.02 \]

\[a_i = A_i - \hat{A} \]

\[A_i = \ln(z_i - D) \]

Breakdown

What we have:
- Observation points for \(u \), the measured wind speed
- Observation points for \(z \), the measured height
- Assumed surface wind speed of \(u_{sfc} = 0 \)
- Von Kármán constant, \(k_v \)

What we need:
- Displacement height, \(D \)
 (more on this on next slide)

What we can do:
- Calculate \(u \) and \(z_0 \) to fit the observational data to a log profile equation
2. METHODOLOGY

DISPLACEMENT HEIGHT (D)

Importance of D
- Represents level that log profile extrapolates to zero (not necessarily the axis)
- Dependent on sea state over ocean
 - Roughness
 - Swell height
 - Sea spray

Guess + Test to find D
- Test Range: \([-LL_{low}, +LL_{low}]\)
- \(LL_{low}\) = the lowest point (○) of user-identified log layer (□)
- Use test value for D to solve log profile
 - Compare to measured points
 - Calculate square of residual for each point
 - Repeat for entire range with 0.001m steps
 - D with the lowest sum of the squares of the residuals (across all points) will be selected

(Stull 1988)
2. METHODOLOGY

CONFIDENCE CHECK OF CALCULATIONS

Ideal Log Profile Created
- \(Z = 16 \text{m} \) to \(40 \text{m} \) w/ \(2 \text{m} \) steps
- \(D = 5.237 \text{ m}; u_\ast = 1.75; z_0 = 0.001 \text{ m} \)
 (arbitrarily selected to create profile)
- \(U_Z = \frac{u_\ast}{k_v} \ln \left[\frac{Z-D}{z_0} \right] \)

Test Equations with Idealized Data Points
- Plug in data points from created profile
- Solve for \(D, u_\ast, \) and \(z_0 \)

Results from Calculations
- \(D = 5.24 \text{ m} \)
- \(u_\ast = 1.7497 \)
- \(z_0 = 0.000998 \text{ m} \)
- All three values are incredibly close to the input values. Slight differences attributed to rounding errors in the calculation. Calculations seem to work!
Example Profiles with an Identifiable Log Layer

Sonde #g102815174
- $D = -0.20$
- $u^* = 2.239$
- $z0 = 0.1502$
- $U_{10} = 23.6 \text{ ms}^{-1}$

Sonde #g103515143
- $D = 5.44$
- $u^* = 1.911$
- $z0 = 0.0223$
- $U_{10} = 25.4 \text{ ms}^{-1}$

Sonde #g103125312
- $D = 0.90$
- $u^* = 4.769$
- $z0 = 0.693$
- $U_{10} = 30.7 \text{ ms}^{-1}$

3. **Results**
Example Profiles without an Identifiable Log Layer

Why do these not work?
- No easily-identifiable linear sections on a log-scale
- Some apparent missing data at lower levels
- Equations require a section of clearly log-linear points in order to fit data to a neutral solution

Why the non-linearity?
- Possible non-neutral conditions
- Interference from gusts
- Effect of sea spray

3. Results
Analysis of Log Profile Method

Produces reasonable 10m wind speeds
- WL150 and MBL500 are layer means that often misrepresent 10m speeds
- 10m measurements are often representative of gusts as opposed to sustained winds

Produces flux parameters \((u_*, z_0)\)
- Provide a good fit to data (where a log layer can be identified)

Future

Neutral Conditions
- Start evaluating stress using \(u_*\) and \(z_0\)
- Expand equations to solve for heat and moisture parameterizations
 - \(q_*\) and \(z_{0,q}\) – used for moisture flux
 - \(\theta_*\) and \(z_{0,\theta}\) – used for heat flux

Non-Neutral Conditions
- Consider stability parameters and reevaluate all equation sets for non-neutral cases by considering perturbations from neutral cases
REFERENCES

Bourassa, M. A., 2020: Solving Log Wind Profile v5. Center for Ocean-Atmospheric Prediction Studies (COAPS) at Florida State University.,

CONTACT

Daniel Wallace: dwallace@coaps.fsu.edu

Mark Bourassa: bourassa@coaps.fsu.edu

Heather Holbach: heather.holbach@noaa.gov

Please feel free to reach out with any questions

WEBSITES

• Department of Earth, Ocean & Atmospheric Science at FSU: eoas.fsu.edu
• Center for Ocean-Atmospheric Prediction Studies at FSU: coaps.fsu.edu
• Northern Gulf Institute (NOAA Cooperative) at MSU: northerngulfinstitute.org
• NOAA Atlantic Oceanographic and Meteorological Laboratory Hurricane Research Division: aoml.noaa.gov/hrd