Impact of Global Ocean Surface Flux Product, J-OFURO3

Japanese Ocean Flux data sets with Use of Remote Sensing Observations

Hiroyuki Tomita (Nagoya University) Shin'ichirou Kako (Kagoshima University) Tsutomu Hihara (JAFIC) Masahisa Kubota (Tokai University) Kunio Kutsuwada (Tokai University)

🔠 Major contents

See more

Download

Taylor Diagram for LHF@global in 2008 V1.0: Summary of inter-

ータセット

J-OFURO3 Japanese Ocean Flux data sets with Use of Remote Sensing Observations $J-OFURO1 \rightarrow J-OFURO2 \rightarrow J-OFURO3$ 2016 2008 2000

Available fluxes and parameters

```
LHF, SHF: Latent and Sensible Heat Fluxes
SWR, LWR: Short and Longwave Radiation
NHF: Net Heat Flux
TAUX, TAUY: Zonal & Meridional Momentum Fluxes
WND, UWND, VWND: Wind-speed, Zonal & Meridional Winds
FWF: Fresh Water Flux, EVAP: Evaporation,
                                            RAIN
SST: Sea Surf. Temp.
QA: Specific Humidity, QS: Saturated Surface Specific Humidity
TA10: Air Temp.(10m), DT: Temperature Difference
```

Overview across J-OFURO data sets including J-OFURO3

IOWVST 2021 Online meeting

	J-OFURO1	J-OFURO2	J-OFURO3
Period	1992-1993	1988-2008	1988-2013 Data set for 1988-2017 will be available
Temporal average	monthly	daily	daily
Spatial grid size	1.0deg.	1.0deg.	0.25deg.
SST	Reynolds SST	MGDSST	Ensemble median of various products
Humidity	Schlussel et al. 1995 SSMI	Schlussel et al. 1995 SSMIs	New algorithm SSMIs, SSMIS, AMSR-E, TMI, AMSR2
Wind	SSMI	SSMIs, AMSR-E, TMI ERS-1/2, QuikSCAT	SSMIs, SSMISs, AMSR-E, AMSR2, TMI, WindSat, ERS-1/2, QuikSCAT, ASCAT-A/B, OSCAT

Tomita et al. (2018)

Examples of Wind Field by J-OFURO3

clearer understanding of more fine-scale ocean-atmosphere features such as mesoscale eddies and geographic features

Validation of different global data sets for sea surface wind-stress

by Masafumi Yagi and Kunio Kutsuwada

Global surface wind stress product used in this study

Name	Spatial Resolution	Temporal Resolution	
QSCAT/J-OFURO2	1.00 deg	daily	Satellite
J-OFURO3	0.25 deg	daily	Satellite
IFREMER	0.25 deg	daily	Satellite
CCMP V2	0.25 deg	daily	Hybrid
NCEP/NCAR	2.00 deg	daily	Reanalysis
NCEP/CFSR	0.50 deg	daily	Reanalysis
JRA55	1.25 deg	daily	Reanalysis
JRA55-do	0.5625 deg	daily	Reanalysis
ERA-Interim	0.75 deg	daily	Reanalysis

★ KEO/JKEO 🔵 NDBC 🔻

Wind Stress (from 1 January 2008 to 31 December 2008)

	Low-latitudes			Low-latitudes			
Product name	15°S-15°N (17625)			15°S-15°N (17625)			
	Bias	RMSE	r	Bias	RMSE	r	
J-OFURO2	0.0058	0.0170	0.939	0.0028	0.0123	0.941	
J-OFURO3	-0.0008	0.0173	0.931	0.0029	0.0132	0.935	
IFREMER	-0.0022	0.0156	0.944	0.0023	0.0112	0.951	
CCMP v2.0	0.0006	0.0063	0.978	0.0003	0.0078	0.978	
NCEP/NCAR1	0.0121	0.0223	0.881	-0.0003	0.0199	0.839	
NCEP/CFSR	0.0073	0.0117	0.949	0.0045	0.0095	0.950	
JRA55	0.0056	0.0138	0.885	0.0020	0.0665	0.851	
JRA55-do	0.0077	0.0171	0.932	0.0020	0.0146	0.914	
ERA-Interim	0.0038	0.0201	0.900	0.0018	0.0174	0.875	

This statistical values shows the best reliability for CCMP product with lowest mean and RMS differences and highest correlation.

IOWVST 2021 Online meeting

There are large differences in mid- and high latitudes in yearly-average and standard deviation fields.

Annual mean Wind Stress Curl by J–OFURO3

Validation of different global data sets for sea surface wind-stress

by Masafumi Yagi and Kunio Kutsuwada

Summary

Validations reveal that the J-OFURO3 has relatively higher reliability than other satellite and reanalysis ones except the hybrid one (CCMP), especially in the tropical Pacific region.

Intercomparisons among the curl fields exhibit that the CCMP has its spatial feature in relationship with buoy locations, possibly due to spatial no-uniformity arising from data assimilation

In spatial spectra, the J-OFURO3 has its spectral feature in some regions with energy level higher than those by other products in scales shorter than about 100km, suggesting the possibility of detecting small-scale features. Frontiers in Marine Science published: 05 February 2021 doi: 10.3389/fmars.2021.612361

IOWVST 2021 Online meeting

NaN

Advances in the estimation of global surface net heat flux based on satellite observation

by Hiroyuki Tomita, Kunio Kutsuwada, Masahisa Kubota and Tsutomu Hihara

Long-term (1988-2017) average of global surface net heat flux by J-OFURO3 monthly means for 1988-2017. Positive values are upward heat flux.Locations of 11 buoys used in comparison are indicated as black circles.

Buoy Stations used in comparison with J-OFURO3. N means number of valid monthly means.							
	Site name	Location	Sart date	Final date	N	Framework	Provider
1	KEO	32.3N, 144.6E	2004/6/17	2018/12/31	105	005	NOAA/PMEL
2	PAPA	50.1N, 144.9W	2007/6/9	2018/12/31	108	005	
3		0N, 165E	2006/7/13	2017/9/8	63	GTMBA	
4	TAO/TRITON	0N, 170W	2006/6/25	2018/10/29	49		
5		0N, 140W	2006/9/16	2018/12/31	76		
6	PIRATA	0N, 23W	2007/5/26	2014/7/6	46		
7	ΡΑΜΑ	0N, 80.5E	2008/8/10	2014/8/17	35	GTMBA	
8		15N, 90E	2008/10/20	2016/5/21	50		
9	WHOTS	22.75N, 158W	2008/8/14	2018/9/24	152		WHOI
10	STRATUS	20S, 85W	2000/10/8	2018/4/7	192	ORS	
11	NTAS	15N, 51W	2001/3/31	2018/6/11	187		

Tomita et al. (2021)

IOWVST 2021 Online meeting

Long-term average of global mean NHF

Tomita et al. (2021)

200

Balance of each component of global long-term average of J-OFURO3 surface net heat flux (NH). The balance of turbulent heat flux (TUR) and net surface radiation (RAD), and the full components: net shortwave radiation (SW), net longwave radiation (LW), latent heat flux (LH), and sensible heat flux (SH) are shown.

Tomita et al. (2021)

IOWVST 2021 Online meeting

The NHF by J-OFURO3 has negative bias (ocean heating) for almost all stations.

The SHF by J-OFURO3 has negative bias for all the stations.

Latitudinal dependency of Biases

Tomita et al. (2021)

IOWVST 2021

Online meeting

Frontiers in Marine Science published: 05 February 2021 doi: 10.3389/fmars.2021.612361

Advances

in the estimation of global surface net heat flux based on satellite observation

by Hiroyuki Tomita, Kunio Kutsuwada, Masahisa Kubota and Tsutomu Hihara

Summary

Global averages of surface net heat flux are estimated from the J-OFURO3 product to verify the balance/imbalance in the heat budget through ocean surface. The value for the 30-year mean is about 22 W m⁻² meaning the imbalance to heat the ocean surface. Validation for the heat flux components exhibits that there are systematic biases in sensible heat flux. Correction of these biases gives the imbalance of about 11 W m⁻² which is approximately half the original one.

Tomita et al. (2018)

Journal of Oceanography, 2018, VOL.75, NO. 2, 171-194, https://doi.org/10.1007/s10872-018-0493-x

An introduction to J-OFURO3, a third-generation Japanese ocean flux data set using remote-sensing observations

Yagi and Kutsuwada (2020)

International Journal of Remote Sensing2020, VOL. 41, NO. 15, 6022–6049 https://doi.org/10.1080/01431161.2020.1714784

Validation of different global data sets for sea surface wind-stress

Tomita et al. (2018)

Frontiers in Marine Science published: 05 February 2021 doi: 10.3389/fmars.2021.612361

Advances in the estimation of global surface net heat flux based on satellite observation