SFMR Algorithm Update

HEATHER HOLBACH

FSU, NGI, NOAA/AOML/HRD

IOVWST, FEB/MAR 2021

Motivation

Inconsistencies noted between the dropsonde, SFMR, and flightlevel surface wind speed estimates

IOVWST 2021

• Especially in major hurricanes

NHC time series plot of various wind speed observations in Hurricane Dorian (2019). Notice the divergence in Aircraft (sfc) or SFMR, Drop (sfc), and Aircraft (flt to sfc) in the magenta circle.

How does the SFMR algorithm work?

IOVWST 2021

Prior Algorithm Updates

IOVWST 2021

Very few data points to constrain wind-induced (excess) emissivity curve above 50 m/s in previous update

Current Wind Speed Fit

Feb/Mar 2021

IOVWST 2021

Storm-relative Collocations

IOVWST 2021

- Previous algorithm updates used
 SFMR at time of dropsonde launch
- Assuming wind speed is azimuthally similar around a TC, using same radial position of SFMR as the dropsonde from the center should provide improved match-up
 - Very sensitive to accuracy of center, so did not provide improved comparison

LF Reflectivity for 20170905H2 at 213443Z

Collocation Issues in High Winds

0.5km TDR 20190831H2 at 000700Z

+ is dropsonde launch location while black wind barb is dropsonde location and wind at 0.5km

Rapid dropsonde releases across the eyewall illustrate the change in downwind translation (left) and radial translation (top) of the sondes that can advect the sondes into regions with different wind speeds.

Updating Wind-Induced Emissivity Curve

- Klotz and Uhlhorn (2014) Criteria:
 ∪_{sfc} ≤ 35 m/s: RR ≤ 2 mm/hr
 - \circ 35 m/s < U_{sfc} \leq 60 m/s: RR \leq 10 mm/hr
 - \circ U_{sfc} > 60 m/s: all RR
- Current Emissivity Curve:

$$\varepsilon_{w,4.74} = \begin{cases} a_1 U_{\text{sfc}} & 0 \le U_{\text{sfc}} < w_l \\ a_2 + a_3 U_{\text{sfc}} + a_4 U_{\text{sfc}}^2 & w_l \le U_{\text{sfc}} < w_u \\ a_5 + a_6 U_{\text{sfc}} & w_u \le U_{\text{sfc}} \end{cases}$$

$$w_l = 7.0 \text{ m/s} \quad w_u = 37.0 \text{ m/s}$$

U_{sfc}: WL150 surface-adjusted wind speed RR: SFMR rain rate

Updated SFMR and dropsonde comparison using same criteria as Klotz and Uhlhorn (2014).

Adjusting Fit Shape & Rain Rate Thresholds

Fit with quadratic instead of linear at high end for same criteria as Klotz and Uhlhorn (2014)

Lower wind speed range for rain rate thresholds (quadratic at high end)

Feb/Mar 2021

Lower rain rate threshold for high end given

that there appears to be a trend with rain

rate (all dropsonde overflights included

Next Steps

Refine emissivity curve

- Continue testing of rain rate thresholds
 - Determine if correction is required to rain related parameters in algorithm
 - Are we seeing impacts from sea spray that aren't being accounted for?
- Finalize curve shape
- Seek feedback from SFMR expert community
- Update frequency dependence for emissivity curve

IOVWST 2021

- Reprocess using new curve
 - Quantify wind speed difference at high winds

