Towards QuikSCAT coastal winds at OSI-SAF

G. Grieco ¹ J. Vogelzang ² M. Portabella ¹ A. Verhoef ²
A. Stoffelen ²
10th Feb 2021

¹ Barcelona Expert Center (ICM-CSIC)
² Koninklijk Nederlands Meteorologisch Instituut (KNMI)
Aims of the project

- Development of pencil-beam scatterometer coastal wind processing
- Development of a QuikSCAT coastal wind climatology
Outline of this presentation

• Implementation of the QuikSCAT Spatial Response Function (SRF)
• Characterization of the slice σ_0 noise
• Analysis of cross-calibration issues
• Conclusions and future work
SRF computation: methodology

- Analytical (Spencer et al. 2000)
- Look-Up Table (LUT)-derived. 2-step procedure:
 1. Query of LUT: $\text{SRF}(\psi, \text{OT}, \text{pol})$ (Prof. Dave Long)
 - ψ Antenna azimuth angle
 - OT Orbit Time
 - pol beam identifier (HH or VV)
 2. Re-centering procedure

Land Contribution Ratio (LCR) consistency

- The LCR is the ratio of the footprint area contaminated by land and the total area.
- The numbers in the contours indicate the slice index.
- The black (red) numbers on the right indicate the LCR computed with the analytical (LUT-derived) SRFs.
- Land contaminated slices may affect the wind field retrieval.
Definition of K_p

- K_p is a measure of the slice σ_0 noise: $\frac{\sigma_{\sigma_0}}{\bar{\sigma}_0}$
 - σ_{σ_0} is the σ_0 noise
 - $\bar{\sigma}_0$ is the expected value
- Theoretical formulation $K_p = K_{p\alpha} + \frac{K_{p\beta}}{SNR} + \frac{K_{p\gamma}}{SNR^2}$ (Fisher 1972)
 - $K_{p\alpha}$, $K_{p\beta}$, $K_{p\gamma}$ are provided in QuikSCAT Full Resolution files
 - SNR is the Signal to Noise Ratio

K_p estimation (\hat{K}_p): methodology

- $U_T = \{5, 7.5, 10, 12.5, 15\}$ ms$^{-1}$
- $\forall U_T \quad \sigma_{0}^{U_T} \triangleq \frac{1}{2\pi} \int_{0}^{2\pi} NSCAT4DS(U_T, \phi, \theta, p) d\phi$
- $\sigma_{0}^{U_T}$ is the average σ_0 associated to wind speed U_T
- $\hat{\sigma}_0 \in \sigma_{0}^{U_T} \pm 0.5$ dB
- $\hat{\sigma}_0$ (slice σ_0) separated for:
 - pol (HH - VV)
 - view (Fore - Aft)
 - slice index: 0, ..., 7 (0-based numbering)
- Assessment of $\hat{K}_p = \frac{\sigma_{\hat{\sigma}_0}}{\bar{\sigma}_0}$. $\sigma_{\hat{\sigma}_0}^2 = E[(\hat{\sigma}_0^i - \bar{\sigma}_0)^2]$, $\bar{\sigma}_0 \equiv \sigma_{0}^{egg}$
Dataset

- Date: 10th April
- 1 orbit file (40651.20071011559)
- L1B QuikSCAT Full Resolution files
 - ...
 - Slice centroid position and σ_0 value
 - Egg position and σ_0 value
 - K_p coefficients
 - Satellite position and velocity info
 - Orbit Time
 - Antenna info (ψ, pol, incidence angle (θ), ...)
 - ...

IOVWST 2021
General Quality Control

- σ_0 quality flag
 - scatterometer pulse quality is acceptable
 - σ_0 cell location algorithm converges
 - Frequency shift is within the range of the x factor table
 - Spacecraft temperature is within calibration coefficient range
 - An applicable attitude record was found for this σ_0
 - Interpolated ephemeris data are acceptable for this σ_0

- frame error status (communication with the SC)
- frame quality flag (telemetry frame)
- Incidence of general QC: 0.6 % HH 0.72% VV
Cross-calibration issue: inter-slice biases for QuikSCAT HH beam

The black numbers in the SRF contours indicate the slice index.
Preliminary conclusions

- Significant differences between analytical and LUT-derived SRFs
- \hat{K}_p and K_p (and σ_{K_p}) decrease with σ_0
- \hat{K}_p has a parabolic trend w.r.t. the slice index (expected)
- K_p is overestimated for slices 0 & 1; K_p is underestimated for slices 6 & 7
- σ_0^{HH} is noisier than σ_0^{VV}
- Presence of inter-calibration issues
Future work

- Validation of the LCR-based σ_0 correction scheme
- Set-up of a K_p-dependent regression scheme
- Implementation of the coastal processor
Acknowledgements

- Project financed by OSI-SAF EUMETSAT
- Special thanks to
 - Prof. Dave Long (BYU)
 - Dr. Bryan Stiles and Dr. Roy Scott Dumbar (JPL)
Questions? Please contact me at grieco@icm.csic.es

Thanks