



**Royal Netherlands** Meteorological Institute Ministry of Infrastructure and Waterworks

# **Hurricane Ocean** Wind Speeds

Ad.Stoffelen@knmi.nl

KNMI: Gert-Jan Marseille, Weicheng Ni, **IFREMER:** Alexis Mouche, JPL: Federica Polverari, ICM: Marcos Portabella, **NUIST:** Wenming Lin,

NOAA: Joe Sapp, Paul Chang, Zorana Jelenak

Alphen NB, NL, 22.2.2021

## Need for accurate extreme winds

- Nowcasting, though dropsondes are the adopted wind speed reference here; if the wind speed reference changes, hurricane scales change too as everything relies on dropsonde wind speed calibration (SFMR, Dvorak, ...)
- > NWP, to formulate **drag** and air-sea interaction stresses
- > Oceanography, to determine mixing depth in hurricanes
- Climate monitoring, to determine climate change at the extremes
- Climate prediction, to well describe coupled ocean and atmosphere dynamics
- Improved description of hurricane dynamics
- Satellite ocean surface wind speed calibration for active and passive microwave remote sensing

#### **Validation metrics**

- Based on dropsondes as these are used in the operational community (though open questions remain on their accuracy as articulated in <u>CHEFS</u>)
- Use CHEFS method for spatial scaling, collocation, ..
- SFMR, Dvorak, SMAP, SMOS, ..., depend on dropsondes
- Use stress-equivalent 10-m ECMWF and buoy winds
- Triple collocation
- CMOD7D



#### Polverari et al., in review

#### **Moored buoys**

- Best controlled resource for in-situ wind speed calibration at moderate and high winds
- Work well up to 25 m/s as verified with wind tower
- Dynamically corrected platform winds
- Claims of ocean wave shielding lead to non-substantiated sources
- Cup anemometer biases at extreme winds may be a few % (only)
- Rare encounter with hurricanes
- Ethan Wright's talk



#### **Dropsondes open issues**

- Dropsondes cannot follow the wind near the surface, due to the strong deceleration as function of the drag;
- The correction for this leads to an integration effect in the vertical, where the wind profile is logarithmic;
- 10-m SFMR winds in hurricanes are inconsistent with a log profile;
- The position computation by the dropsonde GPS chip has not (yet) been investigated, nor its derivation of speed and acceleration, with may cause further bias in strong deceleration (drag);
- Most passive satellite winds, SFMR, best track, etc. are all calibrated with respect to dropsondes and show the same inconsistency with respect to the buoy winds;
- The above conversion takes the spatio-temporal scale of the verification sources into account, hence differences are believed not to be dominated by local gradient effects;
- On the other hand, ASCAT and ECMWF follow the moored buoy scale (up to recently).
- Buoy winds are not frequent in hurricanes, but are validated by masts to be unbiased up to 25 m/s (within ~10%), while at 25 m/s the conversion bias from (1) is **45%**;
- Other in-situ (incl. land-based) wind sources suffer from wind flow distortion biases, positive and negative, or from height down conversion errors to 10m;
- These results call for further investigation of the true in-situ wind speed reference in hurricane conditions.
- Due to the above-mentioned inconsistency, calibration of satellite winds (above 25 m/s) is uncertain, as well as their assimilation in NWP and the associated drag formulation in Earth System Models.





 $\geq$ 

Royal Netherlands Meteorological Institute Ministry of Transport, Public Works and Water Management

#### 3. Hurricane Eyewall Detection





BY



Exploit SAR for hi-res information

• 2DVAR for vortex construction for SAR and scatterometer

#### **Decadal differences ASCAT-ERA5**



- <u>Windstorm Information Service</u>
- C3S WISC
- ASCAT versus ERA5 first guess
- Also ERS, QuikScat and OSCAT
- Passive wind instruments reliable? From 1988



### Discussion

- Hurricanes are among the deadliest and costly natural disasters
- Extreme wind measurements come in two different flavours
- Uncertainty about the extremes propagates into the modelling of hurricane dynamics and hurricane occurrence
- Further research is needed on dropsondes wind speeds, particularly in the lowest tens of meters
- Although moored buoy winds show less dispersion around 20 m/s than dropsondes, there is room for further uncertainty assessment and attribution (Wright et al.)
- Mixing instruments/producers for determining climate trends is not recommendable due to variable sampling and calibration
- Validate reanalyses by collocated stable single-instrument series
- Further supporting slides follow this slide
- Other IOVWST hurricane talks: Guimond et al., Sienkiewicz, Richardson et al., Wallace et al., Stow et al., Holbach, Sanchez et al., Foster

## **EUMETSAT** CHEFS Objectives



- VH GMF: The understanding of the future C-band VH information contribution to high and extreme wind retrievals from C-band scatterometer missions;
- Spatial scaling of extremes: The definition of spatial scaling issues and related consequences for product sample resolutions and validation approaches;
- Understanding of extremes: To further understanding of satellite remote sensing of high and extreme wind conditions over the ocean.
- In-situ wind speed reference needed for all extreme wind products, from satellites, reanalyses to NWP models



#### CHEFS



- EUMETSAT ITT 16/166
  - > Extreme winds calibration
  - > VH test data
  - KNMI
    - > EPS-SG design and VH
      - > GMF and retrieval
    - > Calibration strategy
- ICM
  - > Scatterometer science
- IFREMER
  - > SAR wind retrieval
  - > Data lab, L-band, GMF

#### **Other references?**

- +ve and –ve wind flow distortion around platforms
- Verification shows differences to platforms 2x as high as to buoys; what is this scatter? Does it cause bias? Useful as calibration reference?
- Platform motion (ships)
- Errors are not well controlled, larger than for moored buoys and tend to be environmentally dependent



#### **Stress-equivalent winds in TCs**

- Only near tropical cyclones (TC)
- Pressure and humidity affect air mass density
- Particularly near TC centres
- At extreme winds up to a few m/s (5%)
- Needs to be accounted for



#### **ASCAT-VV calibrated to SFMR**

- Storm centered
- SFMR relatively high
- SFMR is based on dropsondes
- ASCAT VV is based on buoys

- > 12 m/s apply for x=V(ASCAT):
  V'(ASCAT)=0.0095x<sup>2</sup>+1.52x-7.6
- Better cc, bias, SD and rmse for the same sample with CMOD7D
- ✓ Good match up to 40 m/s



#### **Operational CMOD7 versus CMOD7D**



#### **SAR aggregated NRCS**

MANGKHUT - S1A - From 2018/09/14 09:50:35 to 2018/09/14 09:52:21 - Cat 5 - Incidence Angle: 39.18 deg



- E-VET 3

## VH and L-band T<sub>B</sub>

- Linear dependency
- Theoretically not obvious to relate Bragg to L T<sub>B</sub>
- Measurement accuracy will determine quality of L-band and VH extreme winds
- High rain enhances VH NRCS at 19-22 and 40-43 degrees
- High rain reduces VH NRCS at 22-25 and 31-34 degrees
- SCA VH is excellent choice for extremes



#### Recommendations

- Use dropsonde  $U_{10S}$  rather than WL150
- Perform a log-profile analysis
- Investigate speed-dependent deceleration error dropsondes at 10 m
- Convert buoys, dropsondes and model winds to U<sub>10S</sub>
- Investigate different buoy types and possible wave effects on buoy measurements
- Investigate direct buoy-dropsonde collocations > 15 m/s
- After in-situ wind speed calibration, SFMR needs adaptation, as well as all satellite sea surface winds
- It furthermore will allow NWP model drag parameterization tuning
- Closer collaboration with JCOMM, satellite wind producers and ECMWF will be very beneficial to consolidate the in situ, satellite winds and NWP community practices
- Refine ASCAT calibration, VV GMF (cone) and retrieval at high/extreme winds
- Extend SAR and NOAA campaigns for refined geophysical studies

#### **CHEFS Conclusions**

- We still lack a consolidated in-situ wind speed reference
- Affects satellite & NWP products and hurricane advisories!
- Confidence in moored buoys up to 25 m/s
- U10S needed
- Questions drop sondes?
- ASCAT VV correlates well at high winds
- SCA VH excellent choice



#### **Decadal extreme changes**



- Huge year-to-year variability in extremes
- Depends on El Nino
- Use longest possible satellite record
- Depends on observing system sampling, single processor version (calibration, QC), uniform sampling over decade
- Use overlapping singleinstrument/singleprocessor series for climate analyses

#### **NRT OSI SAF visualization at KNMI**

-20

-10

-5

-3

-2

2

3

5

10

20

999 MLE

ASCAT-B: 20201216 10:30Z lat lon: -16.0 174.0 IR: 10:30 170°E [BFt] Б. 12 15 18 21 9 24 255 [m/s]

- Considered as part of ESA MAXSS project
- Storm-centric tiles based on track predictions of TC and Polar Low?
- Dropsonde scale
- SMOS, SMAP, radiometers?
- High resolution, 5.6 km for ASCATs ?
- Maintenance in OSI SAF ?



#### ESA Marine Atmosphere eXtreme Satellite Synergy (MAXSS)

- IFREMER has scientific lead
- Tropical Cyclones (TC), extra-tropical cyclones (ETC), polar lows (PL)
- Integrate research and operational instruments: SMOS, SMAP, SSMI, AMSR, WindSat
- Integrated product (atlas)
- Intercalibration, production, visualization, monitoring
- Application in climate, nowcasting, NWP, ...
- Links to EUMETSAT <u>OSI SAF</u>, EU <u>C3S</u>, EU <u>CMEMS</u>

#### 

#### **ESA MAXSS project WPs and SubWPs**

| <u>WP1000</u><br>Scientific<br>Requirements<br>Consolidation and<br>Dataset collection<br><i>B. Chapron (IFR)</i> | WP2000<br>Development<br><i>M. Portabella</i><br>(ICM/CSIC)<br>WP2100                                                                                                                                                                           | WP 3000<br>Ocean+Extremes<br>Datasets Production<br>and Validation<br>J.F. Piolle (IFR)<br>WP3100                                                                                                                                                                                                                                                                                                                                                       | <u>WP4000</u><br>Scientific<br>Analysis<br>J. Shuttler<br>(U. Exceter)                                                                                                                          | <u>WP5000</u><br>Impact<br>Assessment<br><b>A.Stoffelen</b><br>(KNMI)               | <u>WP6000</u><br>Scientific<br>Roadmap<br>J. Johanessen<br>(NERSC) | <u>WP7000</u><br>Outreach &<br>Com<br>A. Mouche<br>(IFR)                              | <u>WP8000</u><br>Management<br>H. Bonekamp       |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------|
| WP1100<br>Scientific Challenge<br>& State of the Art<br>A. Mouche (IFR)                                           | Methods and<br>algorithms<br>For multi-sensor High<br>wind SWS<br>J. Tenerelli (ODL)<br>Methods for multi-<br>sensor High wind SWS<br>Uncertainty<br>estimation<br>M. Portabella (ICM)<br>Methods for Ocean+<br>Extremes Atlas<br>N. Reul (IFR) | Multi-mission wind<br>gridded products<br>production<br>J.F. Piolle (IFR)<br>WP3200<br>Multi-mission wind<br>gridded products<br>Validation<br>Ad Stoffelen (KNMI)<br>WP3300<br>User Manual for the multi-<br>mission wind product<br>J.F. Piolle (IFR)<br>WP3400<br>Ocean+Extremes<br>Atlas Production<br>N. Reul (IFR)<br>Ocean+Extremes<br>Atlas Validation<br>F; Soulat (CLS)<br>WP3600<br>User Manual for<br>Ocean+Extremes Atlas<br>N. Reul (IFR) | WP4100      Investigate the      last 10 years      changes in      extreme winds      Ad Stoffelen      (KNMI)      WP4200      Assessment      of the impact      of extreme      wind events | WP5100<br>Comparisons<br>With existing<br>products<br>M. Paola Clarizia<br>(Deimos) |                                                                    | <u>WP7100</u><br>Project<br>Web Site<br>J.F. Piolle (IFR)                             | WP7100<br>Project<br>Web Site<br>F. Piolle (IFR) |
| WF1200<br>Review of On-going<br>projects<br>M. Portabella (ICM/CSIC)                                              |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                 | WP5200<br>Errors/uncerta<br>inty Analyses<br>Ad Stoffelen<br>(KNMI)                 |                                                                    | WP7100<br>Outreaching:<br>Publications,<br>training &<br>Workshop<br>F. Collard (ODL) |                                                  |
| WP1300<br>User Consultation<br>H. Bonekamp                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                     |                                                                    |                                                                                       |                                                  |
| WP1400<br>Review of Approaches<br>for building products<br>Ad Stoffelen (KNMI)                                    |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | On the ocean<br>W. Perrie (BIO)                                                                                                                                                                 |                                                                                     |                                                                    |                                                                                       |                                                  |
| WP1500<br>Data Collection<br>J. F. Piolle (IFREMER)                                                               | WP2400<br>Vizualisation tools<br>F. Collard (ODL)                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | storm impact or<br>ocean<br>biogeochemistr<br>J. Shuttler                                                                                                                                       | n<br>y                                                                              |                                                                    |                                                                                       |                                                  |
|                                                                                                                   | WP2500<br>Methods for<br>Added-Value<br>Products<br>W Partia (P(0)                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (U. Exceter)                                                                                                                                                                                    |                                                                                     |                                                                    |                                                                                       |                                                  |
|                                                                                                                   | WP2600<br>Validation Metrics<br>Ad Stoffelen (KNMI)                                                                                                                                                                                             | Added Value Product<br>Production<br>J.F. Piolle (IFR)                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                 |                                                                                     |                                                                    |                                                                                       |                                                  |
|                                                                                                                   |                                                                                                                                                                                                                                                 | WP3800<br>User Manual for<br>Added Value products<br>A. Mouche (IFR)                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                 |                                                                                     |                                                                    |                                                                                       |                                                  |