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Background
• Understanding the consistency of satellite & buoy winds is important to satellite wind cal/val, 

observing system design (e.g., TPOS2020), and wind synthesis (e.g., CCMP)
• Satellite & buoy winds have good consistency (~1 m/s) for rain-free conditions, but have significantly 

larger differences under rainy conditions.
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• Possible reasons:
• Rain contamination of 

satellite winds
• Buoy wind measurement 

issues
• Spatial/temporal sampling 

differences (e.g., satellite 
footprint averages vs point-
wise buoy winds)
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• Possible reasons:
• Rain contamination of 

satellite winds
• Buoy wind measurement 

issues
• Spatial/temporal sampling 

differences (e.g., satellite 
footprint averages vs point-
wise buoy winds – the topic 
of this presentation)



Method: assessment based on WRF models
• Analysis of output from two WRF models for the maritime-continent region

• Produced by Dr. Claire Vincent (Univ. of Melbourne) & Dr. Longtao Wu (JPL), respectively
• WRF models have 4-km resolution, hourly output; large-scale field constrained by ERA-Interim for UM WRF
• Examine wind variability within 25x25 km (typical scatterometer footprint)

http://dx.doi.org/10.4225/41/5850b633c54ed
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WRF’s sub-25 km wind speed variability averaged over 2014 boreal winter

Zonal wind averaged over 2014 boreal winter m/s Likely 
underestimated 
“sub-footprint” 
variability due to 
4-km resolution & 
hourly outputs.

~ 0.7 m/s

Similar results 
from outputs 
of the two 
WRF models.



WRF sub-25 km wind variability as a function of rain rate

• This is based on 4-km WRF, hourly output.
• Finer-resolution WRF model with more frequent output may result in larger differences.

0.4 m/s average for rain rate < 2 mm/hr
1.5 m/s average for rain rate >= 2 mm/hr



Courtesy of Larry 
O’Neill, OSU

Satellite-buoy winds more consistent for wind speed than for zonal wind

Larger differences between satellite & buoy winds, esp. during westerly winds. Likely cause:
• Sampling differences cause increased directional discrepancy
• Buoy compass error?
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Sub-25 km variability for wind speed and zonal wind in WRF models
as a function of zonal wind

• Zonal wind sub-25 km variability is indeed larger than that of wind speed, but the differences are much less 
than those between scatterometer and buoy winds.

• This difference from observations may be caused by the domain of the WRF models not encompassing 
enough tropical Pacific domain.
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Sub-25 km variability larger at high winds



Summary
• Analysis of WRF model outputs (4-km, hourly) suggest an average ~0.7 m/s sub-25 km 

variability for ocean surface winds: increasing with rain rate, larger at high winds.

• Such ”sub-footprint variability” can contribute to satellite-buoy wind RMSD significantly.

• The small-scale variability is likely underestimated due to the limited spatial resolution (4 km) 
and hourly output of the WRF models because individual convective rain cells can have 
spatial scale of ~10 km & time scale of minutes.

• The cause for the larger differences between satellite & buoy winds during westerly wind 
bursts need to be understood.



• Examine finer-resolution WRF model with more frequent output (e.g., 1.5-km, 1-minute).

• Analyze Sentinel SAR winds

• Innovative ideas for in-situ process studies: important for wind, precipitation, and SSS cal/val.

• Examine vertical coherence of winds associated with convective rain cells: have implications 
to using ship-based radar measurements to understand satellite sub-footprint surface wind 
variability.

• Triple co-location analysis for convective regions.

Future strategy to improve understanding of 
sub-footprint wind variability



Comparison of ASCAT zonal wind & wind speed vs TAO equivalents as a function 
of (a) TAO zonal wind, (b) # of obs, (c) rain probability, and (d) mean rain rate

Courtesy of Larry O’Neill

• Excellent consistency for wind speed (~ 1 m/s)
• Larger discrepancies for zonal wind associated w/ westerly winds (infrequent & rainy events); potential causes:

• Small-scale variability sampled differently by satellites & buoys causing directional discrepancies
• Rain contamination in satellite winds
• Buoy compass error 


