

Diurnal and high-frequency winds

Sarah Gille
Scripps Institution of
Oceanography, UCSD
IOVWST 19

QuikSCAT morning minus evening differences; Hyder et al (2011)

Why does diurnal variability matter?

- Ubiquitous throughout tropics
- Time of sampling influences mean wind and satellite crosscalibration (particularly because of semi-diurnal cycle)
- Possibility of non-linear interactions with radiative forcing imply net impact on mixed-layer depth, atmospheric convection

- 10S, 10W buoy winds fitted diurnal/semidiurnal
- Strong semi-diurnal cycle (Giglio et al, in prep)

Annual modulation of diurnal cycle

 Can't measure once and then use look-up table to correct wind fields to time of day

 10S, 10W buoy winds seasonal cycle of diurnal amplitude
 (Giglio et al, in prep)

Ocean Vector Surface Winds Constellation Local time coverage assessment (ground track) - NRT data access

Paul Chang, IOVWST 2018

interactions with agencies

Committee on Earth Observation Satellites

Requirements

- Detecting semi-diurnal cycle requires fitting at least 5 unknowns (mean, cosine/sine amplitudes for diurnal, cosine/sine amplitudes for semi-diurnal), which implies need for measurements at 6 or more times of day.
- Air-sea interaction often "event-driven": one big storm or one big gust deepens the mixed layer and cools SST, so capturing statistics of wind events is valuable.
- CEOS recommendations
 - At least 3 scatterometers in orbits designed to roughly meet WMO requirements (observations every 6 hours)
 - One instrument in a non-sun-synchronous orbit for sampling the diurnal cycle, better mid-latitude sampling and provide inter-calibration