Examining cold pool signatures of oceanic systems using ASCAT wind retrievals of varying resolutions

Georgios Priftis¹, Timothy J. Lang², Piyush Garg³, Richard Lindsley⁴, Stephen W. Nesbitt³, Themis Chronis¹

¹University of Alabama in Huntsville

²NASA Marshall Space Flight Center

³University of Illinois at Urbana-Champaign

⁴Remote Sensing System

BACKGROUND

Physical Phenomenon

• Outflow boundaries that emanate from cold pools can occur in different scales and travel up to 100^{nds} of km.

<u>Data</u>

- ASCAT is on board MetOp- A, B, C and wind retrievals are reported at spatial resolutions of 25 km, 12.5 km.
- An Ultra High Resolution (UHR) ASCAT product has been developed in Lindsley et al. (2016) with spatial resolution of 3.5 km.

<u>Methods</u>

 A novel technique to identify cold pools in scatterometer wind retrievals has been recently introduced in Garg et al. (2018).

DATA & METHOD

ASCAT UHR

- Image reconstruction method (AVE)
 -> resolution enhancement.
- Full-resolution (SZF) level 1B containing σ^0 measurements.
- ASCAT Wind Data Processor (AWDP)
- Near-coastal coverage based on land contribution ratio:
 - Spatial response function estimate (footprint)
 - Land indicator function (rasterized map)

Gradient Feature (GF)

• Wind gradient:
$$\left| \nabla \vec{V} \right| = \begin{bmatrix} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \end{bmatrix}$$

- Concave hull algorithm
- Sobel technique for edge detection
- Thresholds for GF:
 - Background noise (primary)
 - Bias (secondary)
- Alpha shapes

MOTIVATION

- How do vector winds, induced by cold-pool, change with different product resolutions?
- How do the thresholds for the detection of gradient features change with resolution?

Currently, 4 case studies have been explored.

CASE STUDY

- GF at 12.5 km identifies features associated with wind changes near precipitation.
- GF at 12.5 km is sensitive to the GF thresholds.

• Higher resolution GF products capture more features at a finer scale.

CONCLUSIONS

- ASCAT 25-km product is able to identify features associated with cold pools, but it is not sensitive to variation in the thresholds.
- ASCAT 12.5-km and 3.5 km products can capture smaller scale features associated with precipitating-wind changes and are sensitive to the GF threshold.
- UHR responds to features driven by large and small scale precipitation, in heavy or light rain rate.

ONGOING WORK

- ASCAT UHR algorithm has been setup in MSFC-UAH.
- Additional analysis needs to be done to evaluate the importance of the gradient wind features, including rain flags and maximum likelihood estimation metric.
- RADAR and buoy observations will be incorporated as ground truth when available.

Thank you for your attention!

Back-up slides

Coastal product

Threshold 1 = 6.8e-5Threshold 2 = 1.2e-4

UHR product

Threshold 1 = 10e-4 Threshold 2 = 4e-4

INDIAN OCEAN

ASCAT GF 25km

- GF at 25 km is able to capture the outflow boundary ahead of the oceanic precipitating system.
- GF at 25 km is not sensitive to the GF thresholds.

INDIAN OCEAN

ASCAT GF 3.5km

- Caution needs to be taken
- GF at 3.5 km is sensitive to the GF thresholds.
- One order of magnitude lower threshold in comparison with lower resolution products.

83°E

81°E

ASCAT – A 3.5km Gradient Wind & **IMERG**