## Feasibility of reconstructing sea surface height from surface current velocity fields

Larry O'Neill<sup>1</sup> Ernesto Rodríguez<sup>2</sup>, Dudley Chelton<sup>1</sup>, Roger Samelson<sup>1</sup>, and Scott Durksi<sup>1</sup> 1: Oregon State University 2: Jet Propulsion Laboratory

2019 OVWST Meeting, Portland, Maine Thursday, May 30, 2019



College of Earth, Ocean, and Atmospheric Sciences

### Motivation

- At the May 2017 Ocean Vector Winds Science Team Meeting in La Jolla, Ross Hoffmann suggested that WaCM could make a good wide-swath altimeter
- \* This project essentially tests the feasibility of this idea
- \* If successful, WaCM could give information on surface winds, currents, and SSH over an 1800km wide swath!

### **Project Objective**

- Can surface current observations from wide-swath Doppler Scatterometers such as the proposed WaCM give reasonable indirect estimates of dynamic sea surface height anomalies?
  - Develop the numerical inversion method

Today's subject

- \* Space-time scales of coherence
- Effects of observational noise and biases in surface currents

Sampling errors due to instrument coverage

Subject of ongoing work

# Helmholtz Decomposition of surface currents



 $\psi$  is the streamfunction (non-divergent flow component)  $\phi$  is the velocity potential (irrotational flow component)

# Streamfunction $\psi$ to SSH $\eta$ using geostrophic approximation

We hypothesize that the geostrophic flow can be approximated by the non-divergent flow component, and thus the streamfunction should be related to the dynamic SSH anomaly  $\eta$ :

$$\boldsymbol{\eta} = \frac{f}{g}\boldsymbol{\psi}$$

### Estimation of SSH from Surface Ocean Current Streamfunction

- Use high resolution ocean model simulations of near-surface ocean currents and SSH
  - Coupled WRF-ROMS simulation off the North American west coast
    - \* 2 km ocean, hourly output for 61 days (Aug 1-Sept 13 2009)
    - Averaged to 10-km for this analysis, commensurate with expected WaCM sampling

### **ROMS SSHA Snapshot**



### Helmholtz Decomposition in a Limited Domain

- \* How do we get streamfunction  $\psi$  from u and v?
- Finite difference the derivatives to second order accuracy, then form a matrix equation for the resulting set of linear equations:
- \* Solve for  $\psi$  and  $\phi$  from this linear matrix equation using a QR decomposition of A

$$\begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{v} \end{bmatrix} = A \begin{bmatrix} \boldsymbol{\psi} \\ \boldsymbol{\phi} \end{bmatrix}$$

$$\begin{bmatrix} \boldsymbol{\psi} \\ \boldsymbol{\phi} \end{bmatrix} = R^{-1} \left( Q \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{v} \end{bmatrix} \right)$$

### Helmholtz Decomposition: Boundary Conditions

- \* Specify streamfunction via SSH two grid points deep into the boundary along the external domain and internal coastlines
  - \* These specify the scalar and normal and tangential derivatives for streamfunction
  - Automatically provides normal and tangential derivatives for velocity potential
- These BCs satisfy uniqueness conditions for the interior streamfunction and velocity potential solutions, to an arbitrary constant in velocity potential

On  $\partial \Omega$ :



### Solution Snapshot



# Solution snapshot with time and space smoothing



# Solution snapshot with time smoothing only



Variability with periods less than 120 hours attenuated

# What temporal variability are we smoothing out?



Answer: Near-inertial motions which are manifest in the surface currents

#### **Clockwise motions are**

enhanced in the inertial band by several orders of magnitude in variance compared with CCW motions

The northern half of the domain experiences much more near-inertial variability

### Clockwise motions more prevalent in the Northern half of the domain



Motions in the inertial band are not geostrophically-balanced, but nonetheless project onto the streamfunction

This violates the dynamical balance equating streamfunction and SSH via geostrophy

 $\int_{-}^{J^2} S^{\pm}(f) \, df$ 

### Rotary Spectra



Ratio of clockwise to counterclockwise variance in surface currents as a function of frequency and latitude

Clockwise rotation several orders of magnitude greater variance than counterclockwise rotations

Ratio CW/CCW

### Rotary Spectra



Ratio of clockwise to counterclockwise variance in surface currents as a function of frequency and latitude

Clockwise rotation several orders of magnitude greater variance than counterclockwise rotations

Ratio CW/CCW

### Cross-spectral wavenumberfrequency statistics

#### Squared Coherence



Coherence lower for high frequencies (periods less than about 5 days) at all wavenumbers

Low frequencies agree well at all wavenumbers

### Summary

- Streamfunction estimates from surface currents and SSH boundary conditions on temporal scales greater than about 5 days
- Near-inertial variability in the surface currents need to be filtered out to obtain useful SSH from this method
- \* This method is promising to estimate SSH from surface currents, at least in the noise-free and well-sampled ROMS simulation
- \* This presents a best case scenario for WaCM
- The method of computing streamfunction and velocity potential will itself be valuable for studying variability in WaCM ocean currents





### Wavenumber-Frequency Spectra





Disagreement on high frequencies and large scales

Near-inertial motions and surface signatures of internal gravity waves

### Cross-spectral wavenumberfrequency statistics







# Snapshot from coupled WRF-ROMS simulation off west of N. Amer.

