

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Inconsistencies in scatterometer wind products based on ASCAT and OSCAT-2 collocations

Zhixiong Wang^{a,b,*}, Ad Stoffelen^c, Biao Zhang^a, Yijun He^a, Wenming Lin^a, Xiuzhong Li^a

^a Nanjing University of Information Science and Technology, Nanjing, China

^b Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

^c Royal Netherlands Meteorological Institute, De Bilt, the Netherlands

Highlights

Zhixiong Wang, Ad Stoffelen, Wenming Lin, Anton Verhoef May 2019

- •Remarkable inconsistencies exist among scatterometer wind vector products.
- •Calibration, wind retrieval algorithm and the GMF constitute the main causes.
- •Wind direction errors from rotating scatterometers are verified and discussed.
- •Different scatterometer wind products show different QC performance and merits.

Fig. A wind front case captured by scatterometers. The O2/JPL data are down sampled (no averaging) for plotting. The wind vectors flagged by quality control are shown in red.

Data	Sensor	Producer	Cridaiza	Wind retrieval processing			
			Grid size	GMF	AR^1	$\mathrm{B}\mathrm{W}^2$	
winds	OSCAT-2	JPL	12.5 km × 12.5 km	QSCAT2012	DIR	NCEP	
winds	OSCAT-2	KNMI	25 km × 25 km	NSCAT-4	2DVAR	ECMWF	
winds	ASCAT-A	KNMI	25 km × 25 km	CMOD5.N	2DVAR	ECMWF	
winds	ASCAT-B	KNMI	25 km × 25 km	CMOD5.N	2DVAR	ECMWF	
rain	GMI	RSS	$0.25^{\circ} imes 0.25^{\circ}$	/	/	/	
SST	MW_IR ³	RSS	$\sim 9 \text{ km} \times 9 \text{ km}$	/	/	/	

¹AR is short for ambiguity removal

²BW is short for background winds

³a number of microwave and infrared sensors, see <u>http://www.remss.com</u>

Quality control flag comparisons

Fig. The fraction of WVCs with rain flag against GMI rain rate for O2/JPL (red) andO2/KNMI (blue) wind products.

Quality control flag comparisons

QC		Doveortogo	O2/JPL – O2/KNMI		O2/JPL - ASCAT		O2/KNMI – ASCAT		
O2/KNMI	O2/JPL	Percentage	Bias	SD	Bias	SD	Bias	SD	
Accepted	Accepted	94.57%	-0.22	0.86	-0.23	1.02	-0.02	0.73	
Accepted	Rejected	0.47%	2.49	5.93	3.08	6.01	0.59	1.50	
Rejected	Accepted	3.71%	0.86	4.15	1.31	4.32	0.45	1.75	
Rejected	Rejected	1.25%	4.36	5.23	7.13	5.40	2.77	2.60	

TABLE Wind comparisons for each of the four QC categories

Fig. Scatter plots for O2/JPL (a) and O2/KNMI (b) wind speeds versus ASCAT-B wind speeds for the collocated WVCs that are rejected by KNMI QC but accepted by JPL rain flag.

2DVAR speeds for QC?

- The 2DVAR wind is essentially rain free due to KNMI QC
- 2DVAR speeds are very close to ASCATB
- 2DVAR-OSCAT speed may be used to indicate singularities due to rain
- It effectively segregates the many data in the rejected category with low rain rate and VRMS
- Work in progress

Xingou Xu, visiting KNMI

Wind speed differences

Fig. Wind speed biases between OSCAT-2 (O2/JPL and O2/KNMI) and ASCAT-B as a function of average wind speed.

If the number of collocated WVCs in a bin is less than 1000, then it is masked as blank.

Wind speed differences

Fig. Scatter plots for O2/JPL (a) and O2/KNMI (b) versus ASCAT-B wind speeds. The plots are made based on the triple collocated WVCs of ASCAT-B, O2/JPL and O2/KNMI.

QC		Deveentere	O2/JPL – O2/KNMI		O2/JPL - ASCAT		O2/KNMI – ASCAT	
O2/KNMI	O2/JPL	Fercentage	Bias	SD	Bias	SD	Bias	SD
Accepted	Accepted	94.57%	-0.22	0.86	-0.23	1.02	-0.02	0.73

Wind speed differences

Fig. Wind speed biases between OSCAT-2 and ASCAT-B as a function of average wind speed and SST, for collocations with O2/JPL (a) and O2/KNMI (b). If the number of collocated WVCs in a bin is less than 500, it is masked as blank..

Wind direction differences (w.r.t. OSCAT ground satellite propagation)

O2/JPL - ASCATB **O2/KNMI** - ASCATB deg Relative wind direction (deg) Relative wind direction (deg) wind direction bias (deg) **Bias** -60-60 -120-120-9 -180-180Wind vector cell number Wind vector cell number deg Relative wind direction (deg) Relative wind direction (deg) wind direction SD (deg) SD -60 -60 -120 -120-180-180Wind vector cell number Wind vector cell number

Thanks!

The second second