

Validation of Scatterometer and Radiometer High Winds Using Oil Platform Anemometers - UPDATE

Andrew Manaster, Lucrezia Ricciardulli, and Thomas Meissner Remote Sensing Systems, Santa Rosa, CA, USA

Acknowledgements: This work is supported by the NASA OVWST

IOVWST Meeting, May 2019 - Portland, Maine

Background

Satellite winds are consistent with buoys for wind speeds < 15 ms⁻¹, within a 1 ms⁻¹ uncertainty.

- Long-standing debate about the validity of buoy winds above 15 ms⁻¹.
- RSS satellite winds are 10 15 % higher than buoys (globally) for these wind speeds.
- Verifying the validity of satellite winds between 15-30 ms⁻¹ is extremely important and can help reconcile a major source of inconsistency between various wind datasets.
- Wind measurements from anemometers mounted on oil platforms in the North Sea provide an important in situ validation source for wind speeds between 15-30 ms⁻¹.

Methodology

- For this study, anemometers underwent rigorous quality control and were compared to satellite and model data.
 - Hourly averaged anemometer wind speeds were collocated with satellite measurements within +/- 1 hour and in the absence of rain.
 - An emometer winds were reduced to a height of 10m using the power law wind profile with $\alpha \mbox{=} 0.06.$
 - This choice of vertical wind profile is based on work done by Furevik and Haakenstad 2012 and is discussed thoroughly in Manaster et al. 2019* (published in the Journal of Atmospheric and Ocean Technology in May 2019).

Main Conclusions

- Plot shows satellite and model winds minus oil platform anemometer winds in the North and Norwegian Seas for all quality controlled anemometer measurements.
 - Binned vs average wind speed.
 - Model anemometer differences tend to be LARGER than satellite anemometer ones.

Remote Sensing Systems

www.remss.com

Why Do We Trust These Satellite Winds at High Wind Speeds?

Furevik, B. R., and H. Haakenstad, 2012: Near-surface marine wind profiles from rawinsonde and NORA10 hindcast. *J. Geophys. Res.*, 117, D23106, <u>https://doi.org/10.1029/2012JD018523</u>.

Error Estimates

- Here we address some issues needed to resolve the debate about the validation of satellite winds with anemometers in the range of 15-30 ms⁻¹.
- We analyzed the error budget at moderate and high wind speeds for Windsat quality controlled anemometer observations.
- Many sources of error were taken into account:
 - Atmospheric Stability
 - Ocean Currents
 - Flow Distortion
 - Errors in anemometer measurements themselves
 - Noise (radiometer/scatterometer)
 - RTM/calibration
 - Spatial/temporal sampling mismatch (Representative error. Wentz 1997*)

Error Budget 1: Vertical Wind Profile

- Uncertainty in the vertical wind profile due to lack of knowledge of the atmospheric stability at the observation time.
- We have used power law profile with α =0.06 in order to reference platform winds to 10m.
 - Neutral stability conditions majority of matchups fall in this category.
 - Explored other profiles and other values of α .
- Range of possible stability conditions leads to error proportional to wind speed.
 - **0.4 ms⁻¹** at W = 10 ms⁻¹ and **0.8 ms⁻¹** at W = 22 ms⁻¹

Error Budget 2: Ocean Surface Currents

oceancurrents.rsmas.miami.edu/atlantic/norwegian 2.html

- Neglecting ocean surface currents
- Satellite data = measure wind speeds w.r.t. moving ocean
- Anemometer data = measure wind speeds w.r.t. Earth
- Currents in North and Norwegian seas mostly
 < 0.5 ms⁻¹. Rarely higher than 1.0 ms⁻¹.
- Since wind generally does not predominantly come from one direction in this area, we treat ocean currents as a random error source and estimate a value of approximately 0.5 ms⁻¹ for both moderate and high wind speeds.

Error Budget 3: Flow Distortion

- Possible distortion of the wind field around the oil platform
- Can depend on height and position of the anemometer mounting on the platform.
- Analysis did not reveal any significant bias of quality controlled anemometer measurements w.r.t. wind direction.
- It is difficult to directly estimate other sources of flow distortion, which might lead to positive/negative biases.
 - We do not expect them to be large at high winds.
 - We estimated their uncertainty contribution as a residual from the error budget starting from observed uncertainty.
- Found the upper bounds of possible flow distortion biases were approximately **0.6 ms**⁻¹ for W = 10 ms⁻¹ and **1.2 ms**⁻¹ for W = 22 ms⁻¹.

		IV 10 ⁻¹	TTV 22 -1
	Error source	$W = 10 \text{ m s}^{-1}$	$W = 22 \text{ m s}^{-1}$
1	Platform anemometer	1.25	>1.25
2	Noise (radiometer/ scatterometer)	0.5	0.5
3	RTM/calibration	0.5	0.5
4	Sampling mismatch	0.9	>1.3
5	Atmospheric stability	0.4	0.8
6	Ocean currents	0.5	0.5
7	Flow distortion	< 0.6	<1.2
	Total observed	1.9	2.5

RMS error budget (in ms⁻¹) for the Windsat-platform matcups at two different wind speeds (W = 10 ms⁻¹ and W = 22 ms⁻¹). Table 2 from Manaster et al. 2019.

Paper reference: Manaster, A., Ricciardulli, L., and Meissner, T., 2019. Validation of High Ocean Surface Winds from Satellites Using Oil Platform Anemometers. Journal of Atmospheric and Oceanic Technology, 36, 803-818, https://doi.org/10.1175/JTECH-D-18-0116.1.

References

-Furevik, B. R., and H. Haakenstad, 2012: Near-surface marine wind profiles from rawinsonde and NORA10 hindcast. *J. Geophys. Res.*, 117, D23106, <u>https://doi.org/10.1029/2012JD018523</u>.

-Kettle, A. J., 2015: A diagram of wind speed versus air-sea temperature difference to understand the marine atmospheric boundary layer. *Energy Procedia*, 76, 138–147, <u>https://doi.org/10.1016/j.egypro.2015.07.879</u>.

-Manaster, A., Ricciardulli, L. and Meissner, T., 2019. Validation of High Ocean Surface Winds from Satellites Using Oil Platform Anemometers. *Journal of Atmospheric and Oceanic Technology*, 36, 803-818, <u>https://doi.org/10.1175/JTECH-D-18-0116.1</u>.

-Pineau-Guillou, L., F. Ardhuin, M. N. Bouin, J. L. Redelsperger, B. Chapron, J. R. Bidlot, and Y. Quilfen, 2018: Strong winds in a coupled wave—atmosphere model during a North Atlantic storm event: Evaluation against observations. *Quart. J. Roy.Meteor. Soc.*, 144, 317–332, <u>https://doi.org/10.1002/qj.3205</u>.

-Wentz, F. J., 1997: A well-calibrated ocean algorithm for special sensor microwave/imager. J. Geophys. Res., 102, 8703–8718, <u>https://doi.org/10.1029/96JC01751</u>.

BACKUP SLIDES

NASA

10 2012-2016 WINDSAT-PLATFORM 2003-2011 WINDSAT-PLATFORM AMSR-2-PLATFORM AMSR-E-PLATFORM 5 Sensor-Platform Bias (m/s) -5 **b**). a). -1010-WINDSAT-PLATFORM WINDSAT-PLATFORM 2007-2016 2003-2009 ASCAT-PLATFORM QuikSCAT-PLATFORM 5 -5 **c)**. d -10 -25 4-1-1 - -- - -25 15 20 15 20 10 0 5 10 0 5 Average Sensor/Platform Wind Speed (m/s)

Remote Sensing Systems www.remss.com

gullfaksc, WIB, Windsat-Platform Bias 2006-2016

