

Preliminary inter-comparison of hurricane hunter and buoy wind observations under high wind conditions, using collocations with ASCAT

F. Polverari¹, M. Portabella¹, W. Lin², J. Sapp^{3,4}, A. Stoffelen⁵, A. Mouche⁶, A. Verhoef⁵, P. Chang⁴, and Z. Jelenak⁴

¹ Institut de Ciències del Mar (ICM–CSIC), Barcelona, Spain
² Nanjing University of Information Science and Technology (NUIST), Nanjing, China
³ Global Science & Technology (GST), Inc., Greenbelt, MD, USA
⁴ National Oceanic and Atmospheric Administration (NOAA-NESDIS), College Park, MD, USA
⁵ Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
⁶ Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Plouzané, France

Photo: courtesy of P. Chang

Outline

1.C-band High and Extreme-force Speeds (CHEFS) project

2. ASCAT and buoy wind comparison

3. Hurricane hunter wind data analysis

4. ASCAT and Stepped Frequency Microwave

Radiometer (SFMR) preliminary wind

comparison

C-band High and Extreme-force Speeds (CHEFS) project

VH GMF: The understanding of the future C-band VH information contribution to high and extreme wind retrievals from C-band scatterometer missions;

Spatial scaling of extremes: The definition of spatial scaling issues and related consequences for product sample resolutions and validation approaches;

Understanding of extremes: To further understanding of satellite remote sensing of high and extreme wind conditions over the ocean

To consolidate an extreme wind reference

Data collection

- Period: 2007-2018
- Moored buoy GTS U10N (NDBC, TAO/TRITON, PIRATA, RAMA, etc.)
- NOAA P-3 flight campaigns (summer & winter)
 - Stepped Frequency Microwave Radiometer (SFMR)
 - Dropsonde
- Best Track data
- ASCAT-A reprocessed U10N
- ERA5 & ECMWF OPS U10N

Outline

1.C-band High and Extreme-force Speeds (CHEFS) project

2. ASCAT and buoy wind comparison

3. Hurricane hunter wind data analysis

4. ASCAT and Stepped Frequency Microwave Radiometer (SFMR) preliminary wind

comparison

ASCAT/Buoy comparison

12.5 km ASCAT QC-accepted wind speed versus buoy wind speed

ASCAT 12.5-km winds slightly low w.r.t. buoy winds above 15 m/s (regardless of anemometer height) – Similar results for 25 km ASCAT winds

ASCAT/Buoy comparison - different wind variability conditions

 Standard deviation increases as the wind variability condition increases

Outline

1.C-band High and Extreme-force Speeds (CHEFS) project

2.ASCAT and buoy wind comparison

3. Hurricane hunter wind data analysis

4. ASCAT and Stepped Frequency Microwave

Radiometer (SFMR) preliminary wind comparison

Dropsonde WL150 Algorithm

 WL150 wind is a altitude weigthed average of the lowest 150m wind measurements available between 10m and 350m

WL150 Algorithm: Minimum heights effects

- Increasing mean bias from 3.17 m/s (nominal altitudes) to 5.35 m/s (highest altitudes).
- Slightly increase of the standard deviation and scaling with height.

WL150 Algorithm: Layer width effects

- The layer width has an impact on WL wind computation;
- The sonde WL wind/SFMR mean bias and RMSE decrease when using smaller layers;
- The 0.85 correction used to convert the sonde WL150 into U10 should be revised when having layer smaller than 150 m.

Layer width: 25 m

Sonde U10_WL150 w.r.t. SFMR averaging

Slightly decrease of the standard deviation

Outline

1.C-band High and Extreme-force Speeds (CHEFS) project

2.ASCAT and buoy wind comparison

3. Hurricane hunter wind data analysis

4. ASCAT and Stepped Frequency Microwave Radiometer (SFMR) preliminary wind comparison

SFMR/ASCAT Comparison: Storm center identification

Interpolation of Best track position to ASCAT pass time (BT points every 6h)

Is Best track accurate enough for ASCAT storm center estimation?

Test case: MATTHEW 2016

Storm-motion relative conversion: The BT vector around the time of the SFMR eye-wall observations (15% of maximum wind observations) is used.

Test case: ERIKA 2015

Time difference ASCAT storm center / SFMR mean operational time: ${\sim}45~min$

Test case: JULIO 2014

Time difference ASCAT storm center / SFMR mean operational time: ${\sim}15~min$

* SFMR position at the time of ASCAT storm center

SFMR/ASCAT Comparison: Preliminary Statistics

ASCAT compared to **closest SFMR** for different ΔT

ASCAT compared to **12.5km averaged SFMR** for different ΔT

Period: 2009-2016

Conclusions

- ASCAT wind products in good agreement with collocated buoy winds up to 25 m/s; slight underestimation of ASCAT w.r.t. buoy for winds above 15 m/s;
- Triple collocation analysis shows no significant degradation of buoy winds up to 25 m/s;
- SFMR & dropsonde comparisons at different spatial/temporal integrations show in general good agreement;
- Special attention is required at near eyewall collocations (most extreme winds & gradients);
- Dropsonde WL150 the layer width and mean altitude do matter. The 0.85 correction factor (to estimate the 10m winds) applies for the lowest 150m layer; alternative correction factors are required for other layers.
- Significant best track position errors
 - Alternatives: use of SFMR data to estimate the storm track; this will only work though when coincident (in time) SFMR-ASCAT overpasses; more accurate estimation of storm center using ASCAT data.
- Substantial underestimation of ASCAT winds > 15 m/s w.r.t. SFMR;
- ASCAT & SFMR however very well correlate (0.93) for high winds;
- Discrepancy between buoy & SFMR high-wind scaling. Which one should we trust?

Two new positions issued at the Barcelona Expert Centre (ICM-CSIC):

- Remote sensing
- Data assimilation into regional NWP

<u>Contact point</u>: Marcos Portabella (portabella@icm.csic.es)

SFMR/ASCAT Comparison: Storm motion relative conversion

- Only one best track vector (*) is used for SFMR storm-relative conversion;
- The vector used is the one around the **time of the SFMR eye-wall observations** (15% of maximum wind observations operational SFMR altitude).

SFMR/Sonde statistics: Rain Effects

- Slight overestimation of SFMR w.r.t. dropsonde at high wind speeds, when high rain rate events occur
- A new reprocessed SFMR dataset will be analyzed (Sapp et al., 2019)

Artifacts when using different BT vector

SFMR/Sonde collocation method (1/2)

Using the dropsonde launch time:

Associating to the dropsonde surface winds the SFMR value at the dropsonde launch time

The dropsonde **displacement** is generally with the **same radial distance** with respect to the center.

We assume that the dropsonde and the SFMR at the launch time are observing the same wind.

SFMR/Sonde collocation method (2/2)

Using Sonde launch time saved in the raw data

WL25 w.r.t. WL150: new correction factor

- WL25 gets lower winds w.r.t. WL150
- WL25 might be more noisy than WL150 as it is derived by measurements closer to the surface
- New correction needs to be applied to estimate U10 from WL25

Sonde U10_WL150: different minimun heights

