Investigation of winds near the ocean surface using airborne Doppler Wind Lidar and dropsondes

G. D. Emmitt (gde@swa.com) and Steve Greco (sxg@swa.com)

Simpson Weather Associates

Charlottesville, Va 22902

www.swa.com

International Ocean Vector Wind Science Team Meeting Portland, Maine May 29-31, 2019

Focus on the lowest 50 meters of atmospheric MBL

- What is the "true" wind at the traditional 10 meter reference height over water, especially for wind speeds >15m/s?
- What do airborne Doppler Wind Lidars(DWL) and dropsondes have to contribute to the calibration of OVWs, especially in conditions of U10>15m/s?
- Two specific issues today:
 - What is the height assignment precision of the HDSS (dropsonde) wind information?
 - How are the DWL wind retrievals below 50m to be used in studies of the Marine Boundary Layer with >15m/s winds?

Overview

- Lowest 50m of the PBL is just one focus area of a more comprehensive series of multi-agency (NASA, ONR and NOAA) funded investigations of the PBL (mostly over water) using airborne Doppler Wind Lidars, dropsondes and other remote sensing capabilities.
- PolarWinds (NASA DC8) 2015, Iceland: > 80 hours DWL time and ~100 dropsondes.
- CPEX (NASA DC8) 2017, Florida: >100 hours DWL time and ~ 300 dropsondes.
- Hurricane Reconnaissance (NOAA P3) 2015-2018, Florida: > 100 hours DWL time and ~ 100 dropsondes
- Aeolus cal/val preparations(NASA DC8) 2019, California: ~45 DWL hours and 64 dropsondes.

Doppler Aerosol Wind (DAWN) Lidar System

Instrument PI: Michael J. Kavaya, NASA LaRC

<u>Attribute</u>	<u>Value</u>
Airplanes Flown	DC-8 and UC-12B
Solid-State Laser Crystal and Wavelength	Ho:Tm:LuLiF, 2.053 Microns
Laser Architecture	Master Oscillator Power Amplifier (MOPA)
Pumping Source, Wavelength, Duration	100mJ, 10HZ, 180ns
Laser Pulse Energy E, Rate f, FWHM Duration t	15 cm
Telescope Diameter D, Magnification M	15 cm, 20
Light Detection Material, Technique	InGaAs, Coherent, Dual-Balanced
Scanner Diameter, Type, Deflection	15 cm, Step-Stare Rotating Wedge, 30° About Nadir
Eye Safety	Safe at any Range When DAWN Closed Up for Flight
Pointing Knowledge Technique	Dedicated INS/GPS on Lidar; dry land returns
LOS Wind Measurement Precision	< 1 m/s
Maximum LOS, Horizontal Wind	±80 m/s, ±160 m/s
Captured Data Length in Range, Altitude	0 – 16.4 km, 0 – 14.2 km
Vertical Resolution	133 m for 512-Sample Range Gate

As used in CPEX

Vertical resolution: 66/33m
Single shot horizontal resolution
 in PBL: <20m
Lowest level of wind retrieval:
 ~ 16m using SRGs
Full tropospheric profiles
 using 2 second stares
 from surface to 12km</pre>

DAWN Capabilities

High coherent Doppler lidar sensitivity to aerosol backscatter, enabling excellent vertical resolution, accuracy, and atmospheric coverage

Provides vertical profiles of horizontal wind vectors, LOS range wind and wind turbulence profiles, and relative aerosol backscatter profiles

Optional number of azimuth angles (up to 12) permits trade of wind variability determination vs. horizontal resolution

Optional number of laser shots averaged for each LOS wind profile permits trade of atmospheric coverage vs. horizontal resolution

Data may be processed multiple ways to provide various combinations of vertical and horizontal resolution, atmospheric coverage, and expected accuracy statistics

HDSS dropsonde developed by ONR by YES

XDD (wt 58g, size 17.8x6.6 cm-upper) with printed circuit board, GPS and VHF antenna and sensor location (lower-left). Modified XDD (right) with black/white cardboard cylinder to minimize radiation effects.

HDSS and XDD Overview

The HDSS (High Definition Sounding System) and eXpendable Digital Dropsonde (XDD)developed by Yankee Environmental Systems through ONR (Black et al., (2107) was used. Before CPEX this dropsonde system had been deployed over the past seven years including :

-Test deployments on the Twin Otter (2011), DC-8 (2013) and WB57 (2013)

The HDSS was selected for three primary advantages over prior dropsonde technologies: - <u>high fall speeds (~30m/s – 18m/s)</u> reduces horizontal drift distances

which is highly desirable in the proximity of organized convection

- <u>surface temperature sensor</u> was seen as particularly important near and under deep convection generating cold pools
- <u>>12 simultaneous sonde tracking capability</u> enables rapid deployment in areas which the science team identified as meeting mission priority.

Near Surface Wind Comparisons Near Buoys (CPEX)

CPEX Mission	DAWN(~50m)	Buoy (id #)	Dropsonde(~20m)]
May 27, 2017	4.3/110	3.8/121 (42001)	<mark>5.0/124</mark>	-
				4
June 1, 2017	2.8/183	3.6/146 (42003)	NA	-
				Dropsonde has
June 16, 2017	<mark>3.2/192</mark>	3.7/162 (VCAF1)	<mark>3.9/180</mark>	high speed bias
				and clockwise
<mark>June 20, 2017</mark>	<mark>13.5/161</mark>	10.9/157 (42001)	<mark>13.2/160</mark>	directional bias
				-
June 20, 2017	12.6/162	11.7/352 (42395)	9.7/10	
June 21, 2017	12.1/185	9.3/171 (42001)	11.6/173	
June 21, 2017	10.5/192	9.0/167 (42001)	11.6/168	

Evaluation of the HDSS data below 50m in MBL

- On-going at both YES and SWA with funding from NASA and ONR.
- The nominal fall speed of the HDSS in the last second before "splash down" is ~18m/s.
- The sonde broadcasts a data packet once per second that contains 2 and 4 Hz information.
- The computed geopotential height is trusted over the GPS report height near the ocean surface.
- Recent questions raised by the OVWs and NWP communities have initiated an investigation into the last second of data transmission
- Current finding: the height assignments for HDSS GPS winds is off by 1.53 seconds or ~28 meters. Thus the U10 winds are biased high...still looking for truth for comparisons.

DAWN/Drop Comparison setup

- Ground return calibration for DAWN while over Florida peninsula
 - Straight and level between 3 and 4 km AGL
 - Perform calibration flight segment before and after an over-water mission clouds and ATC permitting.
- 162 (out of 325) CPEX dropsondes over 16 flights were used in the comparisons (~15,000 height segments of ~ 66 meter DWL vertical resolution)

Example of attitude calibration for DAWN during CPEX

Example ground return calibrations with residual ground speed (Nominal DC-8 groundspeed during calibration is 175m/s)

Date	Yaw	Pitch	Ground	GOF
	Correction	Correction	Speed(m/s)	
May 27	-0.30	-0.30	<mark>0.037</mark>	-0.059
May 29	-0.30	-0.30	<mark>0.199</mark>	0.025
June 1	-0.35	-0.30	<mark>0.045</mark>	-0.007
June 15	-0.45	-0.20	<mark>0.037</mark>	0.038
June 23	+0.05	-0.60	<mark>0.023</mark>	-0.018
June 24	-0.15	-0.55	<mark>0.101</mark>	0.037

DAWN vs dropsonde sampling comparisons

100 km

Dropsonde: 30 -20m/s fall speeds Time in flight: 8000 m in ~5.3 minutes DC-8 ground distance: ~ 65 km Horizontal drift (10m/s wind): 3.2 km

DAWN: ~10 seconds sampling +9 seconds overhead per sounding (3.8km)

Co-located ~ within 5 km

Coincident ~ 5 minutes

Example DAWN-Dropsonde comparison during CPEX 2017

DAWN-Dropsonde comparisons from CPEX 2017 Wind Speed (m/s)

	Number 37m seg	MEAN Z DIFF (m)	BIAS (m/s)	MEAN ABS (ΔWS)	ΔWS RMSD
ALL	15517	3.08	0.09	1.13	1.55
2 LOOK	6921	3.26	0.05	1.28	1.72
5 LOOK	8596	2.93	0.13	1.01	1.39

Differences by wind speed interval (m/s)

Wind Speed Interval	Number	MEAN	BIAS	MEAN	ΔWS
	37m seg	Z DIFF (m)	(m/s)	ABS(ΔWS)	RMSD
0-5 m/s	3193	3.05	-0.36 1.00		1.38
5-10 m/s	5999	3.00	0.10	1.11	1.47
10-15 m/s	3717	3.09	0.27	1.17	1.57
>15 m/s	2608	3.26	0.40	1.26	1.83

Wind Speed Interval	Number	MEAN	BIAS	MEAN	ΔWD
	37m seg	Z DIFF (m)	(deg)	ABS(∆WD)	RMSD
0-5 m/s	3193	3.05	<mark>4.34</mark>	23.40	37.4
5-10 m/s	5999	3.00	<mark>0.43</mark>	10.08	16.1
10-15 m/s	3717	3.09	<mark>-0.99</mark>	6.48	9.30
>15 m/s	2608	3.26	<mark>-1.22</mark>	5.48	10.13

Differences by height interval (km)

Height Interval	Number	MEAN	MEAN		MEAN	ΔWS
	37m seg	Z DIFF (m)		(m/s)	ABS(ΔWS)	RMSD
0-3 km	4935	2.52		-0.02	0.95	1.26
3-6 km	2079	2.91		0.26	1.20	1.62
6-9 km	5774	3.32		0.27	1.14	1.58
9-12 km	2732	3.70		-0.20	1.38	1.84

Height Interval	Number	MEAN	BIAS	MEAN	ΔWD
	37m seg	Z DIFF (m)	(deg)	ABS(ΔWD)	RMSD
0-3 km	4935	2.52	1.62	9.79	17.5
3-6 km	2079	2.91	0.78	10.10	18.4
6-9 km	5774	3.32	0.31	14.25	26.4
9-12 km	2732	3.70	<mark>-0.68</mark>	8.09	11.88

All DAWN – Dropsonde Comparisons from 2017 CPEX (162 ~ co-located, coincident DAWN and Dropsonde Profiles)

Focus on the lowest 50m with airborne DWL

Example 1 from DAWN during CPEX

Focus on lowest 200m using sliding gates

Example 2

Lowest 200m under white cap conditions

23

High wind conditions

Simulations of Airborne DWL measurements within the lowest 50ms over water

DWL pulse for 4 positions relative to ocean surface

Backscatter: white caps with spray below 10m

Return signal within range gate

Wind profile using .14 coefficient in power law

Wind speed per DWL in lowest 50m

Summary

- HDSS sondes may be reporting winds between 20 and 30 meters as much nearer the surface. The average event time error is 1.53 seconds which translates to ~28m with fall speeds of 18m/s.
- The airborne Doppler Wind Lidar (NASA's DAWN) makes retrievals down to the surface using sliding variable and adaptable gates on the raw digitized return. <u>However</u>:
 - Below 50 meters above the water surface the retrievals are heavily dependent upon the backscatter structures.
 - At low wind speeds the near surface (< 10m) values are reported at heights below the surface (can be adjusted after the processing)
 - At high winds speeds with whitecaps and water/salt sprays, <u>the speed of the spray is</u> reported starting at gate altitudes around 50m.
- Recent investigations of high wind situations has revealed a possible method for retrieving <u>winds at and below 10ms with an airborne DWL</u>.

TABLE 2. XDD Sensor Specifications

<u>Parameter</u>	Sensor type/data rate	Accuracy	<u>Resolution</u>
Temperature	e Thermistor/2 Hz/1 Hz	.148 degC	0.0168degC
Pressure	MEMS/2–1 Hz	1.5 hPa at 25C	2.5 hPa
Humidity	MEMS/2–1 Hz	1.8% at 25C	0.1%
SST	IR micro-radiometer 9–11 mm/1 Hz	0.2 at 25C	0.0168C

Current cases from CPEX being used to evaluate buoy/drop/DWL 10m winds

Date	Time(GMT)	HDSS(LH)	HDSS(WS)	HDSS(WD)	DAWN(HT)	DAWN(WS)	DAWN(WD)	Buoy WS	Buoy WD
6062017	185611	28.8	15.26	351.7	46.1	15.42	329.6		
6202017	193720	20.4	17.44	149.3	22.5	17.1	151.38		
	194857	9.8	13.19	160.1	24.2	13.15	165.94	10.9	157
	202916	11.9	16.02	164.1	81	18.66	169.25	11.5	162
	204055	15.5	18.11	173.7	52.1	18.9	169		
6212017	190836	10.9	11.67	143.7	26	11.42	136.9		
	194551	5.4	13.04	159.3	5	13.41	156.8		
	200452	16.2	18.9	180.9	62	16.9	188.6		
	200614	19.8	13.67	200.6	50	17.12	186.9	23.1	283
	220904	36	11.7	175	36	5.7	208.8	9.3	171
		72	12.8	179.1	69	8.94	194.1		
		99.8	12.7	178.6	100.7	13.41	200.1		
Other Case	es								
6062017	195222	26.6	1.92	231.3	59	3	231.4		
	205548	74	3.2	141.3	63	4.8	166.9		
	212058	28	3.4	193.6	41	6	230.1		
					21	7.28	263.1	4.1	199
6202017	183406	19.8	14.1	17.8				16.8	1
	201923	7.4	9.5	8.5				7.4	6.1
	215235	1.4	11.97	138				0.7	91
6212017	201344	18.7	15.15	251.9	17.3	14.6	254.6		
	205002	16.2	7.5	182.3	32.5	8.4	186.2		
	205518	10.6	15.37	237.8				23.1	283
	211840	10.5	9.66	291.3	36	11.94	309.6	10.3	284
	212800	7.1	12.65	281.4				10.3	284
	213946	8.7	8	272.9	31	7.58	281.5		
	215154	8.6	9	226.8	25	7.9	214.8		
	222005		7.27	181.9	23	6.5	169.4	8.9	166
	223308	25	11.57	167.5	25	10.95	182.58	9.1	167
Wind Spee	ed in m/s								
Height in r	neters abo	ve surface	(MSL)						

Another high wind case

34

Difference sorted by convective conditions

Day	Environment		Number	MEAN	BIAS	MEAN ABS	RMSD
			37m segments	Z DIFF	(m/s)	(ΔWS)	(m/s)
May 27	GoM	Undisturbed	1351(9)	2.77	039	0.66	.834
May 29	W Car. Sea	Scatt. Convec	1467(13)	2.86	.17	1.04	1.35
May 31	E of Bahamas	Scatt. Convec	1637(13)	2.83	0.18	0.93	1.21
June 1	Eastern GoM	Org. Convec	590 (13)	3.31	-0.08	1.60	2.12
June 2	GoM	Convective	1415 (17)	3.38	0.23	1.24	1.64
June 6	Eastern GoM Undisturbed(W) Convec (E)		893 (6)	3.04	0.18	0.97	1.24
June 10	E of Bahamas	Org. Convec	1239 (14)	3.11	0.31	1.26	1.67
June 11	Central GoM Inflow	Org. Convec/	1550 (13)	2.99	-0.01	1.22	1.81
June 15	Caribbean Sea	Convective	295 (4)	3.77	0.93	1.78	2.09
June 16	W Car. Sea	Convective	991 (12)	3.25	-0.07	1.40	1.95
June 19	GoM Pre TS Cindy	Convective/	513 (8)	3.86	-0.45	1.20	1.60
June 20	Central GoM TS Cindy Inflow	Convective/	1454 (12)	3.30	0.04	1.18	1.62
June 21	Northern GoM TS Cindy	Convective/	1604 (22)	3.00	0.40	1.16	1.54
June 23	E of Bahamas	Undisturbed	518 (6)	2.58	0.02	0.89	1.17 3

DAWN_DROP COMPARISON TABLE CPEX (162 DROPS) – WIND DIRECTION

Day	Environment		Number	MEAN	BIAS	MEAN ABS	RMSD
			37m segments	Z DIFF	(deg)	(ΔWD)	(deg)
May 27	GoM	Undisturbed	1351 (9)	2.77	3.57	10.27	18.0
May 29	W Car. Sea	Scatt. Convec	1467 (13)	2.86	2.68	10.37	18.63
May 31	E of Bahamas	Scatt. Convec	1637 (13)	2.83	0.57	15.16	29.80
June 1	Eastern GoM	Org. Convec	590 (13)	3.31	0.43	6.92	8.41
June 2	GoM	Convective	1415 (17)	3.38	-2.02	6.88	10.25
June 6	Eastern GoM Convec (E)	Undisturbed(W)	893 (6)	3.04	-2.59	6.14	7.51
June 10	E of Bahamas	Org. Convec	1239 (14)	3.11	1.03	16.50	24.0
June 11	Central GoM Inflow	Org. Convec/	1550 (13)	2.99	0.48	8.89	12.69
June 15	Caribbean Sea	Convective	295 (4)	3.77	-4.30	11.42	15.76
June 16	W Car. Sea	Convective	991 (12)	3.25	-0.17	24.56	40.01
June 19	GoM Pre TS Cindy	Convective/	513 (8)	3.86	-2.84	8.71	12.39
June 20	Central GoM TS Cindy Inflow	Convective/	1454 (12)	3.30	0.28	8.94	19.05
June 21	Northern GoM TS Cindy	Convective/	1604 (22)	3.00	2.23	8.26	13.12
June 23	E of Bahamas	Undisturbed	518 (6)	2.58	3.20	15.1	30.7