Scale dependence of observed wind stress response to ocean mesoscale surface temperatures

Niklas Schneider

International Pacific Research Center & Department of Oceanography, University of Hawai'i at Mānoa

Coupling coefficients

Coupling coefficients

wind divergence related to down-wind SST gradients wind curl related to cross-wind SST gradients

Scale Dependence

Pressure effect Lindzen and Nigam 1987

Vertical mixing mechanism Wallace et al. 1989, Hayes et al. 1989, Samelson et al. 2006

Scale Dependence

Pressure effect Lindzen and Nigam 1987

Vertical mixing mechanism Wallace et al. 1989, Hayes et al. 1989, Samelson et al. 2006

Scale dependence

 $\frac{\vec{k} \cdot \vec{U}}{\gamma}$

pressure effect

vertical mixing mechanism

 $\ll 1$

 $\gg 1$

Scale dependence

 $\frac{\vec{k}\cdot\vec{U}}{\gamma}$

pressure effect

vertical mixing mechanism

 $\ll 1$

 $\gg 1$

 $\frac{\vec{k}\cdot\vec{U}}{f}$

rotation Ekman spiral

advection

down-wind background Rossby number

Hypothesis & observations

Scale dependence of coupling coefficients indicates forcing mechanism for the atmospheric wind response to ocean mesoscale temperatures

Agulhas Retroflection, 45°E-75°E, 50°S-35°S 2000-2008

QuikSCAT (RSS V4) equivalent neutral wind, daily Reynolds SST, daily

Scale dependent coupling coefficients

Fourier amplitudes

$$\vec{u}_{\vec{k}} = \vec{A}_{\vec{k},\vec{U}} T_{\vec{k}}$$

Transfer function

dependent on wavenumber relative to background wind & on background wind speed

Scale dependent coupling coefficients

Transfer function

dependent on wavenumber relative to background wind & on background wind speed

4 day averages, 8°x8° squares background winds: area average

mesoscale perturbations: wave-number Fourier amplitudes estimated via a least square fit

Transfer function: complex regression between Fourier amplitudes of ocean mesoscale SST and winds

in phase with SST

Wind 'direction' transfer function

Wind 'direction' transfer function

Wind divergence transfer function

Wind divergence transfer function

Wind curl transfer function

Wind curl transfer function

Conclusion

Observed imprints of ocean mesoscale SST on surface winds are strong functions of spatial scale

Transfer functions suggest:

- Wind speed modulations result from the vertical mixing mechanism at high background Rossby numbers
- Wind direction modulations are small & due to advection, vertical mixing and pressure effects
- Wind divergence is dominated by large background Rossby numbers, and results from the vertical mixing effect
- Wind curl is dominated by small scales, and results from a combination of pressure and vertical mixing effects and advection