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Marine Hydrophysical Institute (MHI) Research platform
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Measurements, 2009-2015
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Calibration and pattern correction
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Radar antenna pattern (transmit +
receive)
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Surface Currents

Measured drift direction ¢q,, deg
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Scatter diagram of surface current speed (blue points) and direction (red points) from (x-
axis) video data and (y-axis) current at z=10 m corrected for wind-driven shear in the

upper 10m.



Processing
* Digitization rate 40 kHz

* Instantaneous Doppler spectrum, S(f,t) = |FFT(I + iQ)|?, is computed from 0.2s
segments using in-phase, I(t), quadrature, Q(t), components.

* Instantaneous NRCS, a(t) = [ S(f, t)df, Doppler frequency, f(t) = | fS(f,t)df / o(t),
and Doppler bandwidth, DW? = [ (f — f(t))ZS(f, t)df / o(t)

* Instantaneous line-of-sight (LOS) Doppler Velocity, IDV = f(t)/kg, where kg is the radar
wavenumber.

Time-resalved WY Doppler spectrum. Estimated velocity and width are shown by lines
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Tirme, sec

Sample VV Doppler spectrum (6=53°, upwind, U;,=10 m/s) as a function of time. Doppler velocity
(yellow, middle line), Doppler spectrum width (cyan, top and bottom lines). Shades correspond to

spectrum density.



Time series ﬂ
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Sample timeseries of polarization ratio (PR=0y, /05) and Doppler velocity (DV, [m/s]).
Positive DV corresponds to wave crests where PR decreases occasionally to O [dB], (PR=1).



Strong peaks of the NRCS occur in-phase with minima in the polarization ratio (PR), which
occasionally drops down to PR =1 (0 dB).

Such weakly polarized events are associated with wave breaking, but surprisingly do not
cause Doppler velocity spikes.

An expected magnitude of such spikes is of the order of phase velocity of breaking wave.
Because PR =1, such occasional strong breakers cover almost entire radar footprint of
~2m. The wavelength of carrying breaking wave should be at least 10 times of the
footprint size, A = 20m, that corresponds to the phase speed of 5 m/s.

Apparently, the highest IDV values are well beyond that level. This suggests that intrinsic
breaker velocity is lower than the phase velocity of the carrying breaking wave.

Wave breaking contributes to the NRCS and is strongly modulated by the LW. Breaking
instability develops on LW crests and propagates with its phase speed. But once a
breaking crest is broken, it generates disturbances that are embedded in water, and thus
move with LW orbital velocity.

This observation is in contrast with the previous assumption employed in Doppler echo
models that associate the intrinsic speed of breaker-related scattering facet with the
phase speed of the breaking wave.



Scatter diagrams, U10=10m/s, upwind, incidence angle =53°
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Doppler velocity parameterization (KaDop)

Satellite Doppler radar detects NRCS-weighted DV, WDV =v +v'c’ /g,
where U and & are the time mean LOS Doppler velocity and NRCS, and v’ and ¢’ are
wave-induced fluctuations.

Instantaneous Doppler Velocity (IDV) measured by an ideal radar with infinitively
narrow antenna pattern ( a research platform-based radar), IDV=v+Vv’. Simple time
mean, IDV = 7, while NRCS-weighted time average, vo /0, is similar to satellite
measurements.

Time mean IDV equals to the sum of surface current and time mean scatter velocity,
U = u, + c. After removing the surface current from observed DV, the intrinsic
scatter velocity is represented as, ¢ = Cgrqqgq + Ac.

WDV=(u cos ¢, + cgcos@ /| cose |)sinf + Ac +WIDV

The residual term, Ac, accounts for contributions of non-Bragg scattering and the
averaging effect of antenna footprint. It primarily depends on observation geometry
and is parametrized as polynomials of 8 and ¢. Dependence on the sea state (wind
speed, etc) is omitted.



Instantaneous (IDV) and sigma-weighted (WDV) Doppler velocity for drift-corrected
(solid symbols) and non-corrected (transparent symbols) estimates. Solid lines are
Cpr Sin 6. Colors correspond to radar-to-wind azimuth, symbol size ~ U10.
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Wave-Induced Doppler Velocity (WIDV=——) parameterization

o
* NRCS variation, ¢’, is related to Long Wave (LW) elevation, {, via the traditional radar
modulation transfer function (MTF): M = ¢'/(6K{)

* DV fluctuations produced by LW orbital velocity: v’ = G (0, ¢)Q{, where G = cos ¢ sin 6 +
[ cos O is the geometric transformation coefficient projecting the wave orbital velocity onto
the radar LOS direction.

* WIDV is represented in terms of the MTF: WIDV = ;—GRef MS,,df

. S
* MTF is inferred from Doppler radar data: M = =% %mO'SG
vv
o Impact of hydrodynamics MTF on WIDV
0.5 A == — = If ripple doesn’t vary along long
oK wave, the LW orbital velocities
= F — — average out.
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o5l velocity~0.1*U10~1m/s.
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Measured magnitude and phase of Ka-band MTF
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Symbol size ~U10, colors - radar-to-wind direction (blue —upwind). MTF is averaged over LW frequency
range, f, < f < foue- Cutoff corresponds to antenna ground footprint.

Observed MTF magnitude and phase are almost constant within LW frequency range from the wave peak
to the cutoff scale (defined by antenna footprint size), f, < f < fcy:- Magnitude and phase of MTF
averaged over this frequency range are fitted by polynomials of 8, ¢, and log U;,. For given MTF, WIDV is
calculated using the Toba (1973) spectrum.



Total WDV, m/s

KaDop and observed sigma-weighted Doppler velocity, WDV
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WDV, m/s
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Comparisons with empirical Cdop of Mouche et al. (2012) and DopRIM model (for

Ka-band)
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Summary and Questions

Platform data provide both the Instantaneous (IDV) and the NRCS-Weighted (WDV)
Doppler Velocity to distinguish between the mean scattering facet velocity and the
Wave-Induced Doppler Velocity (WIDV). The WDV is a proxy for satellite
measurements that are averaged over spatially large ground footprint.

After subtracting the surface current, the time mean Ka-band IDV is close to cg,-.
The difference from cg, is parametrized as a function of observation geometry only.

WIDV is parameterized in terms of the Modulation Transfer Function (MTF) that is
derived from radar measurements using DV as a proxy for wave gauge. Ka-band
WDV weakly depends on incidence angle and wind speed. Characteristic deviation
of WDV from the line-of-sight Bragg speed is about 20-40 cm/s, which is
parametrized as a function of observation geometry and wind speed (an empirical
KaDop).

Non-polarized scattering (PR~1) from sharp and fast breaking facets don’t pair with
Doppler velocity spikes (order of the phase speed of breaking wave). Breaking
instability develops on LW crests and propagates with its phase speed. But once a
breaking crest is broken, it generates disturbances that are embedded in water and
propagate with LW orbital velocity.



Summary and Questions (continued)

* KaDop needs verification against independent measurements.

* KaDop is based on wind sea (excluding swell). What is possible impact
of swell?

* At given conditions and observation geometry, Ka-band KaDop predicts
smaller Doppler velocity than C-band CDop. Why wave contribution to
Ka-band Doppler velocity is weaker than that in the C-band?



